We introduce a mean-field theoretical framework for generalizing isotropic pair potentials to anisotropic shapes. This method is suitable for generating pair potentials that can be used in both Monte Carlo and molecular dynamics simulations. We demonstrate the application of this theory by deriving a Lennard-Jones (LJ)-like potential for arbitrary geometries along with a Weeks-Chandler-Anderson-like repulsive variant, showing that the resulting potentials behave very similarly to standard LJ potentials while also providing a nearly conformal mapping of the underlying shape.
View Article and Find Full Text PDFSymmetrical protein oligomers are ubiquitous in biological systems and perform key structural and regulatory functions. However, there are few methods for constructing such oligomers. Here we have engineered completely synthetic, symmetrical oligomers by combining pairs of oppositely supercharged variants of a normally monomeric model protein through a strategy we term 'supercharged protein assembly' (SuPrA).
View Article and Find Full Text PDFRestriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains.
View Article and Find Full Text PDF