Front Cell Neurosci
December 2022
The spatio-temporal properties of calcium signals were studied in cultured pyramidal neurons of the hippocampus using two-dimensional fluorescence microscopy and ratiometric dye Fura-2. Depolarization-induced Ca transients revealed an asynchronous delayed increase in free Ca concentration. We found that the level of free resting calcium in the cell nucleus is significantly lower compared to the soma, sub-membrane, and dendritic tree regions.
View Article and Find Full Text PDFBackground: Ca plays an important role in many physiological processes and an accurate study of these signals is important. In modern fluorescence microscopy, a charge-coupled device (CCD) camera is widely deployed for calcium imaging. The ratiometric method is used for the fluorescence dye Fura-2 and Grynkiewitz's formula (Grynkiewicz et al.
View Article and Find Full Text PDFThe spatio-temporal properties of Ca(2+) transients during excitation-contraction coupling and elementary Ca(2+) release events (Ca(2+) sparks) were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+) sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR) release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+) sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical.
View Article and Find Full Text PDFWe extend the sensitivity of quantitative concentration imaging to an approximately 1000-fold range of concentrations by a method that uses two fluorescent dyes with the same fluorophore, having different affinity for the monitored species. While the formulation and illustration refer to a monitor of calcium concentration, the method is applicable to any species that binds to multiple indicators with the same spectral properties. The use of a common fluorophore has the virtue of leaving vast regions of the electromagnetic spectrum available for other applications.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2012
Cardiac alternans is a recognized risk factor for cardiac arrhythmia and sudden cardiac death. At the cellular level, Ca(2+) alternans appears as cytosolic Ca(2+) transients of alternating amplitude at regular beating frequency. Cardiac alternans is a multifactorial process but has been linked to disturbances in intracellular Ca(2+) regulation.
View Article and Find Full Text PDFParameters (amplitude, width, kinetics) of Ca(2+) sparks imaged confocally are affected by errors when the spark source is not in focus. To identify sparks that were in focus, we used fast scanning (LSM 5 LIVE; Carl Zeiss) combined with fast piezoelectric focusing to acquire x-y images in three planes at 1-µm separation (x-y-z-t mode). In 3,000 x-y scans in each of 34 membrane-permeabilized cat atrial cardiomyocytes, 6,906 sparks were detected.
View Article and Find Full Text PDFThe contribution of Ca2+-induced Ca2+ release (CICR) to trigger muscle contraction is controversial. It was studied on isolated muscle fibres using synthetic localized increases in Ca2+ concentration, SLICs, generated by two-photon photorelease from nitrodibenzofuran (NDBF)-EGTA just outside the permeabilized plasma membrane. SLICs provided a way to increase cytosolic [Ca2+] rapidly and reversibly, up to 8 μM, levels similar to those reached during physiological activity.
View Article and Find Full Text PDFPhotoactivated probes have gained interest as experimental tools to study intracellular signalling pathways all the way to the molecular level. However technical limitations of the means to activate such compounds have put constraints on their use in spatially highly restricted subcellular areas. The Mosaic digital illumination system uses a high-speed array of individually addressable, tiltable micromirrors to direct continuous-wave laser light onto a specimen with diffraction-limited precision.
View Article and Find Full Text PDFMuscular dystrophies are among the most severe inherited muscle diseases. The genetic defect is a mutation in the gene for dystrophin, a cytoskeletal protein which protects muscle cells from mechanical damage. Mechanical stress, applied as osmotic shock, elicits an abnormal surge of Ca(2+) spark-like events in skeletal muscle fibers from dystrophin deficient (mdx) mice.
View Article and Find Full Text PDFCa(2+) sparks, localized elevations in cytosolic [Ca(2+)], are rarely detected in intact adult mammalian skeletal muscle under physiological conditions. However, they have been observed in permeabilized cells and in intact fibres subjected to stresses, such as osmotic shock and strenuous exercise. Our previous studies indicated that an excess in cellular reactive oxygen species (ROS) generation over the ROS scavenging capabilities could be one of the up-stream causes of Ca(2+) spark appearance in permeabilized muscle fibres.
View Article and Find Full Text PDFThe role of mitochondrial Ca2+ transport in regulating intracellular Ca2+ signaling and mitochondrial enzymes involved in energy metabolism is widely recognized in many tissues. However, the ability of skeletal muscle mitochondria to sequester Ca2+ released from the sarcoplasmic reticulum (SR) during the muscle contraction-relaxation cycle is still disputed. To assess the functional cross-talk of Ca2+ between SR and mitochondria, we examined the mutual relationship connecting cytosolic and mitochondrial Ca2+ dynamics in permeabilized skeletal muscle fibers.
View Article and Find Full Text PDFIntact skeletal muscle fibres from adult mammals exhibit neither spontaneous nor stimulated Ca(2+) sparks. Mechanical or chemical skinning procedures have been reported to unmask sparks. The present study investigates the mechanisms that determine the development of Ca(2+) spark activity in permeabilized fibres dissected from muscles with different metabolic capacity.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2003
Whole-cell patch clamp and polarographic oxygen partial pressure (pO2) measurements were used to establish the sensitivity of high-voltage-activated (HVA) Ca2+ channel subtypes of CA1 hippocampal neurons of rats to hypoxic conditions. Decrease of pO2 to 15-30 mm Hg induced a potentiation of HVA Ca2+ currents by 94%. Using selective blockers of N- and L-types of calcium channels, we found that inhibition of L-type channels decreased the effect by 54%, whereas N-type blocker attenuated the effect by 30%.
View Article and Find Full Text PDF