Interaction between a fixed point electric charge Q and a freely rotating point electric dipole with the magnitude P pinned near a plane interface between two dispersionless insulators with different dielectric permittivities ɛ1 and ɛ2 has been considered. It was shown that, as a result of this interaction and the interaction of the dipole with the polarization charges induced at the interface by the charge Q and the dipole itself, there arise regions where the dipole can possess either one or two equilibrium orientations. The spatial distributions of the electrostatic dipole energy Wtotal under the combined action of the charge Q and the induced interface polarization charges, as well as the equilibrium dipole orientations (orientation maps), the boundaries between the regions with different numbers of dipole orientations, and their evolution with the variation of problem parameters (the charge and dipole magnitudes, the mismatch between ɛ1 and ɛ2, and the charge-interface distance) were calculated.
View Article and Find Full Text PDFIon-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, ions had relatively low energies, whereas flow densities were high enough to induce a quasi-liquid state in the upper silicon layers.
View Article and Find Full Text PDFWe studied the striking effect of external irradiation of nanowires on the dynamics of their surface morphology at elevated temperatures that do not destroy their crystal lattice. Numerical experiments performed on the basis of the Monte Carlo model revealed new possibilities for controlled periodic modulation of the cross-section of quasi-one-dimensional nanostructures for opto- and nanoelectronic elements. These are related to the fact that external irradiation stimulates the surface diffusion of atoms.
View Article and Find Full Text PDFWe develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting.
View Article and Find Full Text PDFNon-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods.
View Article and Find Full Text PDFModeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects.
View Article and Find Full Text PDFModelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations.
View Article and Find Full Text PDFWe consider growth of nanoclusters and nanopillars in a model of surface deposition and restructuring yielding morphologies of interest in designing catalysis applications. Kinetic Monte Carlo numerical modeling yields examples of the emergence of face centered cubic (fcc) symmetry surface features in Pt-type metal nanostructures, allowing evaluation of the fraction of the resulting active sites with desirable properties, such as (111)-like coordination, as well as suggesting the optimal growth regimes.
View Article and Find Full Text PDFWe report numerical investigations of a 3D model of diffusive growth of fine particles, the internal structure of which corresponds to different crystal lattices. A growing cluster (particle) is immersed in and exchanges monomer building blocks with a surrounding medium of diffusing (off-lattice) monomers. On-surface dynamics of the latter is accounted for by allowing, in addition to detachment, monomer motion to the neighboring vacant crystal sites, according to probabilistic rules mimicking local thermalization.
View Article and Find Full Text PDF