Publications by authors named "Vy Tran Anh"

Theragnostic platforms, which integrate therapeutic and diagnostic capabilities, have gained significant interest in drug research because of to their potential advantages. This study reports the development of a novel multifunctional nanoparticle carrier system based on poly(ᴅ,ʟ-lactic--glycolic acid) (PLGA) for the targeted delivery of the chemotherapeutic agent chlorambucil (CHL) and the imaging agent IR780. The approach in this study incorporates Pluronic F127-folate onto the PLGA nanoparticles, which enables targeted delivery to folate receptor-expressing cancer cells.

View Article and Find Full Text PDF

Theragnostics has become a popular term nowadays, since it enables both diagnosis and therapy at the same time while only using one carrier platform. Therefore, formulating a nanocarrier system that could serve as theragnostic agent by using simple techniques would be an advantage during production. In this project, we aimed to develop a nanocarrier that can be loaded with the chemotherapeutic medication chlorambucil and magnetic resonance imaging agents (e.

View Article and Find Full Text PDF

Efficient catalytic ring-opening coupled with hydrogenation is a promising but challenging reaction for producing adipic acid (AA) from 2,5-furan dicarboxylic acid (FDCA). In this study, AA synthesis is carried out in two steps from FDCA via tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) over a recyclable Ru/Al O and an ionic liquid, [MIM(CH ) SO H]I (MIM=methylimidazolium) to deliver 99 % overall yield of AA. Ru/Al O is found to be an efficient catalyst for hydrogenation and hydrogenolysis of FDCA to deliver THFDCA and 2-hydroxyadipic acid (HAA), respectively, where ruthenium is more economically viable than well-known palladium or rhodium hydrogenation catalysts.

View Article and Find Full Text PDF

Multifunctional mesoporous silica nanoparticles (MSNs) can confer dynamically varied release kinetics depending on the intermolecular interactions between model drugs and functional decorations on the MSNs. Herein, brush-like fluorescent conjugates were grafted on the pore walls of pristine MSNs for high drug loading and to impart fluorescence properties. The fluorescent MSNs (FMSNs) were further coated with polydopamine (PDA) and graphene oxide (GO) double layer, designated FMSNs@PDA and FMSNs@PDA@GO, respectively.

View Article and Find Full Text PDF