This study explores the synthesis, characterization, and photocatalytic properties of bismuth metal-organic framework (Bi-MOF) nanorods and their derivatives such as Ag/Bi-MOF and Ag/BiO. Bi-MOF nanorods exhibit significant photocatalytic activity under visible light, with the addition of silver (Ag) enhancing electron-hole pair separation and reducing their recombination. This leads to improved photocatalytic performance, particularly in the degradation of organic pollutants such as Rhodamine B (RhB) and Methylene Blue (MB).
View Article and Find Full Text PDFCancer is a multifaceted disease that results from the complex interaction between genetic and environmental factors. Cancer is a mortal disease with the biggest clinical, societal, and economic burden. Research on better methods of the detection, diagnosis, and treatment of cancer is crucial.
View Article and Find Full Text PDFMicromachines (Basel)
January 2023
The first two-dimensional (2D) substance sparked a boom in research since this type of material showed potential promise for applications in field sensors. A class of 2D transition metal nitrides, carbides, and carbonitrides are referred to as MXenes. Following the 2011 synthesis of TiC from TiAlC, much research has been published.
View Article and Find Full Text PDFZeolitic imidazolate framework ZIF-8, a type of metal-organic framework, has diverse applications in multiple catalytic fields due to its outstanding properties. Herein, ZIF-8 photocatalysts with three different morphologies (dodecahedral, pitaya-like, and leaf-like) are successfully synthesized under ambient conditions from zinc salts by altering the volume ratio of methanol and water used as a solvent. The as-synthesized ZIFs have high crystallinity with distinct BET surface areas.
View Article and Find Full Text PDFNanomaterials mainly nanocomposites possess unique physical and chemical properties which makes them superior and indispensable. Though much research has been focused on the properties and application of nanocomposites, the eco-toxicity assessment is one among top priority, which aims to protect the population of concerned biological component and their ecosystem. With this objective, the present study has undertaken an initiation to evaluate the efficacy of chitosan-silver nanocomposite for methyl orange adsorption property (CS-AgNC) and also assessed the toxicity impact on growth parameters of freshwater Tilapia.
View Article and Find Full Text PDFBiogenic gold nanoparticles (AuNPs) have been extensively studied for the catalytic conversion of nitrophenols (NP) into aminophenols and the colorimetric quantification of heavy metal ions in aqueous solutions. However, the high self-agglomeration ability of colloidal nanoparticles is one of the major obstacles hindering their application. In the present study, we offered novel biogenic AuNPs synthesized by a green approach using Cistanche deserticola (CD) extract as a bioreducing agent and stabilized on poly(styrene-co-maleic anhydride) (PSMA).
View Article and Find Full Text PDFSpecific targeting, selective stimuli-responsiveness, and controlled release of anticancer agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi) nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO) was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO) exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.
View Article and Find Full Text PDFZeolite imidazolate framework-8 (ZIF8) represents a class of highly porous materials with a very high surface area, large pore volume, thermal stability, and biocompatibility. In this study, ZIF8-based nanostructures demonstrated a high loading capacity for doxorubicin (62 mg Dox per g ZIF8) through the combination of π-π stacking, hydrogen bonding, and electrostatic interactions. Dox-loaded ZIF8 was subsequently decorated with polyacrylic acid (PAA) (ZIF8-Dox@PAA) that showed good dispersity, fluorescent imaging capability, and pH-responsive drug release.
View Article and Find Full Text PDFIt is vital to have high sensitivity in gas sensors to allow the exact detection of dangerous gases in the air and at room temperature. In this study, we used 2D MXenes and MoS materials to create a TiC-MoS composite with high metallic conductivity and a wholly functionalized surface for a significant signal. At room temperature, the TiC-MoS composite demonstrated clear signals, cyclic response curves to NO gas, and gas concentration-dependent.
View Article and Find Full Text PDFPhotocatalytic hydrogen (H) generation derived by water has been considered as a renewable energy to solve environmental problems and global energy crises. Thus, it is necessary to explore the most effective photocatalysts by using multi-cocatalysts, due to an intimate interaction between different components. Therefore, we already synthesized the TiO/TiC/g-CN (TTC) photocatalyst from g-CN and TiC MXene via a calcination technique, and applied this composite for H evolution.
View Article and Find Full Text PDFIn this study, a ternary magnetically separable nanocomposite of silver nanoparticles (AgNPs) embedded in magnetic graphene oxide (Ag/FeO@GO) was designed and synthesized. Beta-cyclodextrin was used as a green reducing and capping agent for decorating of AgNPs on FeO@GO. The fabricated material was characterized using X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFPhotocatalytic activity is a feasible solution to tackle environmental pollution caused by industrial pollutants. In this research, TiC-TiO composite with a unique structure was fabricated successfully via a hydrothermal method. Especially, the in-situ transformation of TiO from TiC MXene creates an intimate heterostructure, which leads to prolonging separation and migration of charged carriers.
View Article and Find Full Text PDFIn this work, a novel ternary FeO/CuO@C composite was fabricated using iron-doped copper 1,4-benzenedicarboxylate metal-organic frameworks as a self-sacrificing template. The morphological, structural, and optical properties of the prepared composite were determined by various techniques, and its photocatalytic behavior was investigated for degradation of ciprofloxacin under visible light irradiation. The FeO/CuO@C material presented a porous structure with a rough surface of about 4-20 μm, and was composed of the FeO/CuO nanocomposite uniformly distributed on a carbon support.
View Article and Find Full Text PDFIn this study, natural core-shell structure activated carbon beads (ACBs) from Litsea glutinosa seeds were successfully produced, characterized, and applied for adsorption of methylene blue (MB). The ACBs were prepared using single-step carbonization-activation with NaHCO at the optimized activation temperature, time, and activating agent concentration of 450 °C, 60 min, and 5%, respectively. Batch experiments were performed to determine the optimum adsorption conditions, suitable kinetic and isotherm models, and thermodynamic parameters for the adsorption of MB onto ACBs.
View Article and Find Full Text PDFBackground: Core-shell types of mesoporous silica nanoparticles (MSNs) with multimodal functionalities were developed for bio-imaging, controlled drug release associated with external pH, and near-infrared radiation (NIR) stimuli, and targeted and effective chemo-photothermal therapeutics.
Materials And Methods: We synthesized and developed a core-shell type of mesoporous silica nanocarriers for fluorescent imaging, stimuli-responsive drug release, magnetic separation, antibody targeting, and chemo-photothermal therapeutics. Also, the biocompatibility, cellular uptake, cytotoxicity, and photothermal therapy on these FS3-based nanocarriers were systematically investigated.
J Colloid Interface Sci
January 2018
This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen.
View Article and Find Full Text PDFRedox enzyme maturation proteins (REMPs) are system-specific chaperones required for the maturation of complex iron sulfur molybdoenzymes that are important for anaerobic respiration in bacteria. Although they perform similar biological roles, REMPs are strikingly different in terms of sequence, structure, systems biology, and type of terminal electron acceptor that it supports for growth. Here we critically dissect current knowledge pertaining to REMPs of the nitrate reductase delta superfamily, specifically recognized in Escherichia coli to include NarJ, NarW, TorD, DmsD, and YcdY, also referred to as the NarJ REMP subfamily.
View Article and Find Full Text PDFThe system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA.
View Article and Find Full Text PDF