Prenat Diagn
January 2022
Binding of tumour necrosis factor α (TNFα) to its receptor (TNFR1) is critical for both survival and death cellular pathways. TNFα/TNFR1 signalling is complex and tightly regulated at different levels to control cell fate decisions. Previously, we identified TNFR1-d2, an exon 2-spliced transcript of TNFRSF1A gene encoding TNFR1, whose splicing may be modulated by polymorphisms associated with inflammatory disorders.
View Article and Find Full Text PDFBackground: In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place.
View Article and Find Full Text PDFRecent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains' organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation.
View Article and Find Full Text PDFMethods Mol Biol
October 2017
The chromosome conformation capture (3C) technique is fundamental to many population-based methods investigating chromatin dynamics and organization in eukaryotes. Here, we provide a modified quantitative 3C (3C-qPCR) protocol for improved quantitative analyses of intra-chromosomal contacts. We also describe an algorithm for data normalization which allows more accurate comparisons between contact profiles.
View Article and Find Full Text PDFBy family-based screening, first Fuchs and then many other authors showed that mutations in THAP1 (THAP [thanatos-associated protein] domain-containing, apoptosis-associated protein 1) account for a substantial proportion of familial, early-onset, nonfocal, primary dystonia cases (DYT6 dystonia). THAP1 is the first transcriptional factor involved in primary dystonia and the hypothesis of a transcriptional deregulation, which was primarily proposed for the X-linked dystonia-parkinsonism (DYT3 dystonia), provided thus a new way to investigate the possible mechanism underlying the development of dystonic movements. Currently, 56 families present with a THAP1 mutation; however, no genotype/phenotype relationship has been found.
View Article and Find Full Text PDF