Three-dimensional (3D) cell culture systems are becoming increasingly popular due to their ability to mimic the complex process of angiogenesis in cancer, providing more accurate and physiologically relevant data than traditional two-dimensional (2D) cell culture systems. Microwell systems are particularly useful in this context as they provide a microenvironment that more closely resembles the in vivo environment than traditional microwells. Poly(ethylene glycol) (PEG) microwells are particularly advantageous due to their bio-inertness and the ability to tailor their material characteristics depending on the PEG molecular weight.
View Article and Find Full Text PDF3D-ordered porous CdS/AgI/ZnO nanostructures were designed to perform as high-performance photoelectrodes for photoelectrochemical (PEC) water-splitting applications. They rely on the advantages of an extremely large active surface area, high absorption capacity in the visible-light region, fast carrier separation and transportation caused by the intrinsic ladder-like band arrangement. These nanostructures were fabricated by employing a three-stage experiment in a sequence of hard mold-assisted electrochemical deposition, wet chemical method and deposition-precipitation.
View Article and Find Full Text PDF