Publications by authors named "Vukasin Jovanovic"

There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation.

View Article and Find Full Text PDF

Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation.

View Article and Find Full Text PDF
Article Synopsis
  • The hypothalamus plays a critical role in maintaining homeostasis and is central to energy, glucose regulation, and reproduction through its arcuate nucleus (ARC).
  • Researchers developed a robotic cell culture platform to convert human pluripotent stem cells into specific neuronal types with ARC-like characteristics, showing potential for studying metabolic disorders.
  • This new model demonstrates responsiveness to hormones and neuropeptides, indicating its usefulness for disease research and understanding the dynamic regulation of related pathways, such as those involved in obesity and type 2 diabetes.
View Article and Find Full Text PDF

Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes.

View Article and Find Full Text PDF

Embryoid bodies (EBs) and self-organizing organoids derived from human pluripotent stem cells (hPSCs) recapitulate tissue development in a dish and hold great promise for disease modeling and drug development. However, current protocols are hampered by cellular stress and apoptosis during cell aggregation, resulting in variability and impaired cell differentiation. Here, we demonstrate that EBs and various organoid models (e.

View Article and Find Full Text PDF

Human gliogenesis remains poorly understood, and derivation of astrocytes from human pluripotent stem cells (hPSCs) is inefficient and cumbersome. Here, we report controlled glial differentiation from hPSCs that bypasses neurogenesis, which otherwise precedes astrogliogenesis during brain development and in vitro differentiation. hPSCs were first differentiated into radial glial cells (RGCs) resembling resident RGCs of the fetal telencephalon, and modulation of specific cell signaling pathways resulted in direct and stepwise induction of key astroglial markers (NFIA, NFIB, SOX9, CD44, S100B, glial fibrillary acidic protein [GFAP]).

View Article and Find Full Text PDF

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10 neural crest, followed by differentiation into sensory neurons.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) are inherently sensitive cells. Single-cell dissociation and the establishment of clonal cell lines have been long-standing challenges. This inefficiency of cell cloning represents a major obstacle for the standardization and streamlining of gene editing in induced pluripotent stem cells for basic and translational research.

View Article and Find Full Text PDF

Efficient translation of human induced pluripotent stem cells (hiPSCs) requires scalable cell manufacturing strategies for optimal self-renewal and functional differentiation. Traditional manual cell culture is variable and labor intensive, posing challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Human pluripotent stem cells (hPSCs) can grow a lot and turn into different cell types, but they are very sensitive to their surroundings, which makes them hard to use for treatments.
  • Scientists found a mix of special chemicals (called CEPT) that helps these cells survive better by stopping stress that harms them.
  • This mix can help with many important tasks in stem cell research, like freezing cells and editing genes, making it safer and easier to use hPSCs for different applications.
View Article and Find Full Text PDF

Efficient translation of human induced pluripotent stem cells (hiPSCs) depends on implementing scalable cell manufacturing strategies that ensure optimal self-renewal and functional differentiation. Currently, manual culture of hiPSCs is highly variable and labor-intensive posing significant challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions.

View Article and Find Full Text PDF

The embryonic formation of midbrain dopaminergic (mDA) neurons provides critical guidelines for the differentiation of mDA neurons from stem cells, which are currently being developed for Parkinson's disease cell replacement therapy. Bone morphogenetic protein (BMP)/SMAD inhibition is routinely used during early steps of stem cell differentiation protocols, including for the generation of mDA neurons. However, the function of the BMP/SMAD pathway for specification of mammalian mDA neurons is virtually unknown.

View Article and Find Full Text PDF

Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders.

View Article and Find Full Text PDF

Studying the development of mesodiencephalic dopaminergic (mdDA) neurons provides an important basis for better understanding dopamine-associated brain functions and disorders and is critical for establishing cell replacement therapy for Parkinson's disease. The transcription factors Otx2 and Lmx1b play a key role in the development of mdDA neurons. However, little is known about the genes downstream of Otx2 and Lmx1b in the pathways controlling the formation of mdDA neurons in vivo.

View Article and Find Full Text PDF

Subtle mood fluctuations are normal emotional experiences, whereas drastic mood swings can be a manifestation of bipolar disorder (BPD). Despite their importance for normal and pathological behavior, the mechanisms underlying endogenous mood instability are largely unknown. During embryogenesis, the transcription factor Otx2 orchestrates the genetic networks directing the specification of dopaminergic (DA) and serotonergic (5-HT) neurons.

View Article and Find Full Text PDF