Publications by authors named "Vujanovic L"

Background: The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3 natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3 NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions.

View Article and Find Full Text PDF

CD8 tumor-infiltrating lymphocytes (TILs) are increasingly used in oncology as a prognostic and predictive tool to guide patient management. This review summarizes current literature on CD8 TILs in head and neck squamous cell carcinoma (SCC). Published meta-analyses and clinical trials evaluating CD8 TILs were analyzed.

View Article and Find Full Text PDF

Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8 T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-responding patients may enable the development of novel combination therapies. p38 MAPK is a known regulator of dendritic and myeloid cells however a tumor-intrinsic immunomodulatory role has not been previously described.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) agents are prominent immunotherapies for the treatment of advanced melanoma. However, they fail to promote any durable clinical benefit in a large cohort of patients. This study assessed clinical and molecular predictors of ICB response and survival in advanced melanoma.

View Article and Find Full Text PDF

Cells within a tumor microenvironment (TME) dynamically communicate and influence each other's cellular states through an intercellular communication network (ICN). In cancers, intercellular communications underlie immune evasion mechanisms of individual tumors. We developed an individualized causal analysis framework for discovering tumor specific ICNs.

View Article and Find Full Text PDF

Targeted immunotherapy has improved patient survival in head and neck squamous cell carcinoma (HNSCC), but less than 20% of patients produce a durable response to these treatments. Thus, new immunotherapies that consider all key players of the complex HNSCC tumour microenvironment (TME) are necessary to further enhance tumour-specific T cell responses in patients. HNSCC is an ideal tumour type in which to evaluate immune and non-immune cell differences because of two distinct TME aetiologies (human papillomavirus (HPV)-positive and HPV-negative disease), multiple anatomic sites for tumour growth, and clear distinctions between patients with locally advanced disease and those with recurrent and/or metastatic disease.

View Article and Find Full Text PDF

Background: The effectiveness of MAPK pathway inhibitors (MAPKi) used to treat patients with BRAF-mutant melanoma is limited by a range of resistance mechanisms, including soluble TNF (solTNF)-mediated NF-kB signaling. solTNF preferentially signals through type-1 TNF receptor (TNFR1), however, it can also bind to TNFR2, a receptor that is primarily expressed on leukocytes. Here, we investigate the TNFR2 expression pattern on human BRAF melanomas and its role in solTNF-driven resistance reprogramming to MAPKi.

View Article and Find Full Text PDF

The essential innate immunity effector cells, natural killer and dendritic cells, express multiple plasma membrane-associated tumor necrosis factor (TNF) superfamily (TNFSF) ligands that, through simultaneous and synergistic engagement, mediate anti-cancer cytotoxicity. Here, we report that circulating B cells, mediators of adaptive humoral immunity, also mediate this innate anti-cancer immune mechanism. We show that resting human B cells isolated from peripheral blood induce apoptosis of, and efficiently kill a large variety of leukemia and solid tumor cell types.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is characterized by complex relations between stromal, epithelial, and immune cells within the tumor microenvironment (TME). To enable the development of more efficacious therapies, we aim to study the heterogeneity, signatures of unique cell populations, and cell-cell interactions of non-immune and immune cell populations in 6 human papillomavirus (HPV) and 12 HPV HNSCC patient tumor and matched peripheral blood specimens using single-cell RNA sequencing. Using this dataset of 134,606 cells, we show cell type-specific signatures associated with inflammation and HPV status, describe the negative prognostic value of fibroblasts with elastic differentiation specifically in the HPV TME, predict therapeutically targetable checkpoint receptor-ligand interactions, and show that tumor-associated macrophages are dominant contributors of PD-L1 and other immune checkpoint ligands in the TME.

View Article and Find Full Text PDF

Regulatory T cells (Treg cells) are critical mediators of self-tolerance, but they can also limit effective anti-tumor immunity. Although under homeostasis a small fraction of Treg cells in lymphoid organs express the putative checkpoint molecule Tim-3, this protein is expressed by a much larger proportion of tumor-infiltrating Treg cells. Using a mouse model that drives cell-type-specific inducible Tim-3 expression, we show that expression of Tim-3 by Treg cells is sufficient to drive Treg cells to a more effector-like phenotype, resulting in increases in suppressive activity, effector T cell exhaustion, and tumor growth.

View Article and Find Full Text PDF

Background: Head and neck squamous cell carcinomas (HNSCCs) are common malignancies caused by carcinogens, including tobacco and alcohol, or infection with human papillomavirus (HPV). Immune checkpoint inhibitors targeting the programmed cell death 1 (PD-1) pathway are effective against unresectable recurrent/metastatic HNSCC. Here, we explored the safety and efficacy of anti-PD-1 therapy in at-risk resectable HPV-positive and HPV-negative HNSCC in the neoadjuvant setting.

View Article and Find Full Text PDF

Immune and molecular profiling of CD8 T cells of patients receiving DC vaccines expressing three full-length melanoma antigens (MAs) was performed. Antigen expression levels in DCs had no significant impact on T cell or clinical responses. Patients who received checkpoint blockade before DC vaccination had higher baseline MA-specific CD8 T cell responses but no evidence for improved functional responses to the vaccine.

View Article and Find Full Text PDF

High prevalence, peculiar etiopathogenesis, and ineffective therapies have contributed to the fact that genital warts are one of the most challenging issues in modern medicine. This prospective study was aimed at determining the clinical efficacy of combination therapy with 0.5% podophyllotoxin solution and liquid nitrogen cryotherapy in the local treatment of genital warts in men.

View Article and Find Full Text PDF

Cell-membrane expressing enzymes such as ADAM (a disintegrin and metalloproteinase) superfamily members are thought to be key catalysts of vital cellular functions. To directly measure these enzymes and determine their association with particular cells and functions, individual-cell membrane-bound enzyme activity assays are required, but unavailable. We developed two such assays, using a fluorescence resonance energy transfer (FRET) peptide substrate (FPS) and flow cytometry.

View Article and Find Full Text PDF

Background: Cancer vaccines are designed to promote systemic antitumor immunity and tumor eradication. Cancer vaccination may be more efficacious in combination with additional interventions that may build on or amplify their effects.

Methods: Based on our previous clinical and in vitro studies, we designed an antigen-engineered DC vaccine trial to promote a polyclonal CD8 and CD4 T cell response against three shared melanoma antigens.

View Article and Find Full Text PDF

It has been known for decades that the immune system can be spontaneously activated against melanoma. The presence of tumor infiltrating lymphocytes in tumor deposits is a positive prognostic factor. Cancer vaccination includes approaches to generate, amplify, or skew antitumor immunity.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients.

View Article and Find Full Text PDF

: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) patients with reduced natural killer (NK)-cell numbers and function have been shown to have a poor disease outcome. Mechanisms underlying NK-cell deficiency and dysfunction in HCC patients remain largely unresolved. α-Fetoprotein (AFP) is an oncofetal antigen produced by HCC.

View Article and Find Full Text PDF

TNF is a potent promoter of carcinogenesis and potentially important target for cancer prevention. TNF is produced as functionally distinct transmembrane and soluble molecules (tmTNF and sTNF, respectively), but their individual roles in carcinogenesis are unexplored. We investigated the participation of tmTNF and sTNF in chemically induced carcinogenesis in mice.

View Article and Find Full Text PDF

Background: Dendritic cells (DC) are uniquely equipped to capture, process, and present antigens from their environment. The context in which an antigen is acquired by DC helps to dictate the subsequent immune response. Cancer vaccination promotes antitumor immunity by directing an immune response to antigens expressed by tumors.

View Article and Find Full Text PDF

A promising vaccine strategy for the treatment of cancer involves the use of vaccines incorporating tumor antigen-derived synthetic peptides that can be coordinately recognized by specific CD4 and CD8 T-cells. Previously, we reported that a MAGE-A6-derived peptide (MAGE-A6) and its highly-immunogenic and cross-reactive homolog derived from HF-2 permease (HF-2) are promiscuously presented by multiple HLA-DR alleles to responder CD4 T-cells obtained from healthy donors and melanoma patients. Here, we investigated whether these same peptides could concomitantly stimulate cross-reactive MAGE-A6-specific CD8 T-cell responses using cells isolated from HLA-A*0201 (HLA-A2) healthy individuals and patients with melanoma.

View Article and Find Full Text PDF

Introduction: Acantholysis is rarely reported histological feature of Pityriasis rubra pilaris (PRP), recently recognized as having diagnostic specificity for differentiating PRP from psoriasis.

Case Report: Adult male patient one week after the introduction of simvastatin had experienced pruritic erythemo-squamous eruption on head and upper trunk that in a month progressed to erythrodermia, with islands of sparing. Histological picture combined pemphigus-like acantholysis with alternating hyper- and parakeratosis, follicular plugs and dermal inflammation, and confirmed the clinical diagnosis of classic adult type 1 PRP.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying a type of virus called Human Adenoviral vectors (HAdV) to use as a cancer vaccine.
  • They found that special cells from this virus can make the body's immune system attack both the virus and cancer cells.
  • The results showed that the vaccine helps activate important immune cells quickly, giving a strong response against both the virus and tumors, making it a promising option for fighting cancer.
View Article and Find Full Text PDF