The glycoside hydrolase family 20 (GH20) predominantly features N-acetylhexosaminidases (EC 3.2.1.
View Article and Find Full Text PDFis a genus of filamentous fungi belonging to the Mucoromycota division. species produce a white, dense mycelium, which is used to create tempeh, a solid-state fermented Asian soybean product, that is gaining renewed attention as a proteinaceous plant food. The profile of carbohydrate-active enzymes (CAZymes) of a fungus or group of fungi, particularly the secretome CAZymes profile, reflects adaptation to different lifestyles and habitats, and has a significant impact on fermentative capacity.
View Article and Find Full Text PDFPlastic production reached 400 million tons in 2022 (ref. ), with packaging and single-use plastics accounting for a substantial amount of this. The resulting waste ends up in landfills, incineration or the environment, contributing to environmental pollution.
View Article and Find Full Text PDFWe report here the identification, characterization and three-dimensional (3D) structure determination of NaNga, a newly identified β-N-acetylgalactosaminidase from the Gram-negative soil bacterium Niabella aurantiaca DSM 17617. When recombinantly expressed in Escherichia coli, the enzyme selectively cleaved 4-nitrophenyl-N-acetyl-β-d-galactosamine (pNP-β-d-GalpNAc). The X-ray crystal structure of the protein was refined to 2.
View Article and Find Full Text PDFTpPL7A and TpPL7B, members of CAZy family PL7, act as β-glucuronan lyases. TpPL7A diverges by lacking the catalytic histidine, identified as the Brønsted base in PL7 alginate lyases. Our research, including TpPL7A's crystal structure, and mutagenesis studies, reveals a shared -β-elimination mechanism with a single tyrosine serving as both base and acid catalyst.
View Article and Find Full Text PDFPolyphenol oxidases catalyze the hydroxylation of monophenols to diphenols, which are reducing agents for lytic polysaccharide monooxygenases (LPMOs) in their degradation of cellulose. In particular, the polyphenol oxidase MtPPO7 from Myceliophthora thermophila converts lignocellulose-derived monophenols, and under the new perspective of the peroxygenase reaction catalyzed by LPMOs, we aim to differentiate the role of the catalytic products of MtPPO7 in priming and fueling of LPMO activity. Exemplified by the activity of MtPPO7 towards guaiacol and by using the benchmark LPMO NcAA9C from Neurospora crassa we show that MtPPO7 catalytic products provide the initial electron for the reduction of Cu(II) to Cu(I) but cannot provide the required reducing power for continuous fueling of the LPMO.
View Article and Find Full Text PDFThis study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids (ZILs) in enhancing the phytoavailability of copper from garden (G) and vineyard (V) soils using the model plant ryegrass. Uncontaminated and artificially contaminated CuSO soils, unamended and ZIL-amended soil modalities were designed. The copper/ZIL molar ratio (1/4) introduced was rationally established based on molecular modeling and on the maximal copper concentration in artificially contaminated soil.
View Article and Find Full Text PDFXylan is a major constituent of plant cell walls and is a potential source of biomaterials, and the derived oligosaccharides have been shown to have prebiotic effects. Xylans can be highly substituted with different sugar moieties, which pose steric hindrance to the xylanases that catalyse the hydrolysis of the xylan backbone. One such substituent is α-D-glucuronic acid, which is linked to the O2' position of the β-1,4 D-xylopyranoses composing the main chain of xylans.
View Article and Find Full Text PDFFucoidanases are endo-fucoidanases (also known as endo-fucanases) that catalyze hydrolysis of α-glycosidic linkages in fucoidans, a family of sulfated fucose-rich polysaccharides primarily found in the cell walls of brown seaweeds. Fucoidanases are promising tools for producing bioactive fucoidan oligosaccharides for a range of biomedical applications. High sulfation degree has been linked to high bioactivity of fucoidans.
View Article and Find Full Text PDFGlucuronan lyases (EC 4.2.2.
View Article and Find Full Text PDFBackground: Antibiotic resistance is a global health crisis. The aim of this study was to explore dentists' perceptions of antibiotic resistance.
Methods: A qualitative method was used.
Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.
View Article and Find Full Text PDFThe modification of gum Arabic with ferulic acid oxidation products was performed in aqueous medium, at 30 °C and pH 7.5, in the presence of Myceliophthora thermophila laccase as biocatalyst. First, this study aimed to investigate the structures of the oxidation products of ferulic acid that could possibly be covalently grafted onto gum Arabic.
View Article and Find Full Text PDFproduces an α-l-fucosidase, FCO1, which so far appears to be the only known fungal GH29 α-l-fucosidase that catalyzes the release of fucose from fucosylated xyloglucan. In our quest to synthesize bioactive glycans by enzymatic catalysis, we observed that FCO1 is able to catalyze a transglycosylation reaction involving transfer of fucose from citrus peel xyloglucan to lactose to produce 2'-fucosyllactose, an important human milk oligosaccharide. In addition to achieving maximal yields, control of the regioselectivity is an important issue in exploiting such a transglycosylation ability successfully for glycan synthesis.
View Article and Find Full Text PDFThe dextransucrase DSR-OK from the Gram-positive bacterium DSM17330 produces a dextran of the highest molar mass reported to date (∼10 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding.
View Article and Find Full Text PDFWe set out to investigate the genetic adaptations of the marine fungus Paradendryphiella salina CBS112865 for degradation of brown macroalgae. We performed whole genome and transcriptome sequencing and shotgun proteomic analysis of the secretome of P. salina grown on three species of brown algae and under carbon limitation.
View Article and Find Full Text PDFA gene encoding a novel dextransucrase was identified in the genome of Oenococcus kitaharae DSM17330 and cloned into E. coli. With a kcat of 691s and a half-life time of 111h at 30°C, the resulting recombinant enzyme -named DSR-OK- stands as one of the most efficient and stable dextransucrase characterized to date.
View Article and Find Full Text PDFLeuconostoc citreumNRRL B-742 has been known for years to produce a highly α-(1→3)-branched dextran for which the synthesis had never been elucidated. In this work a gene coding for a putative α-transglucosylase of the GH70 family was identified in the reported genome of this bacteria and functionally characterized. From sucrose alone, the corresponding recombinant protein, named BRS-B, mainly catalyzed sucrose hydrolysis and leucrose synthesis.
View Article and Find Full Text PDFLeuconostoc citreum NRRL B-1299 has long been known to produce α-glucans containing both α-(1→6) and α-(1→2) linkages, which are synthesized by α-transglucosylases of the GH70 family. We sequenced the genome of Leuconostoc citreum NRRL B-1299 to identify the full inventory of GH70 enzymes in this strain. Three new genes (brsA, dsrM and dsrDP) putatively encoding GH70 enzymes were identified.
View Article and Find Full Text PDFLeuconostoc citreum belongs to the group of lactic acid bacteria and plays an important role in fermented foods of plant origin. Here, we report the complete genome of the Leuconostoc citreum strain NRRL B-742, isolated in 1954 for its capacity to produce dextran.
View Article and Find Full Text PDFOenococcus oeni is the bacterial species which drives malolactic fermentation in wine. The analysis of 50 genomic sequences of O. oeni (14 already available and 36 newly sequenced ones) provided an inventory of the genes potentially involved in exopolysaccharide (EPS) biosynthesis.
View Article and Find Full Text PDF