Two new neolignans, myrifralignans F-G ( and ), four new diarylnonanoid derivatives, myrifragranones A-D (-), and 18 known compounds were isolated and structurally elucidated from nutmeg ( Houtt.) seeds. The absolute configurations of these secondary metabolites were determined using the electronic circular dichroism technique.
View Article and Find Full Text PDFBy various chromatographic methods, 30 phloroglucinols (1-30) were isolated from a methanol extract of Dryopteris crassirhizoma, including two new dimeric phloroglucinols (13 and 25). The structures of the isolates were confirmed by HR-MS, 1D, and 2D NMR as well as by comparison with the literature. The protein tyrosine phosphatase 1B (PTP1B) effects of the isolated compounds (1-30) were evaluated using sodium orthovanadate and ursolic acid as a positive control.
View Article and Find Full Text PDFPhytochemical investigation of Citrus unshiu peels led to the isolation of eight new flavonols (7-9, 11-15) and sixteen known compounds (1-6, 10, 16-24). Their structures were elucidated using spectroscopic analysis (1D, 2D NMR, and HR-MS). Besides, all isolated compounds (1-24) were evaluated for their inhibitory effects on receptor activator of RANKL-induced osteoclastogenesis in BMMs.
View Article and Find Full Text PDFFourteen triterpenes, lup-20(29)-ene-3β,6β-diol (1), betulin (2), lupeol caffeate (3), 3β-caffeoyloxylup-20(29)-en-6α-ol (4), betulin-3β-yl-caffeate (5), 3β-trans-feruloylbetulin (6), betulinaldehyde 3-caffeate (7), 3-O-trans-caffeoylbetulinic acid (8), dammarenediol II 3-caffeate (9), 12-oleanene-3β,6α-diol (10), 11α-hydroxy-3β-amyrin (11), nivadiol (12), 29-hydroxyfriedelin (13), and celastrusin A (14) were isolated from Celastrus orbiculatus Thunb. and evaluated for their activity on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages (BMMs). Compounds betulin (2), betulin-3β-yl-caffeate (5), 3β-trans-feruloylbetulin (6), and 3-O-trans-caffeoylbetulinic acid (8) significantly inhibited osteoclast formation in a dose-dependent manner.
View Article and Find Full Text PDF