The development of nanofibers with incorporated biologically active molecules with a targeted mode of action is a current research trend. Potential materials for the development of such systems include poly(vinyl alcohol) (PVA) and chitosan (CS) nanofibers, which are traditionally fabricated by the electrospinning of aqueous solutions of these polymers with acetic acid. To improve drug integration, ethanol was added to the binary-solvent system.
View Article and Find Full Text PDFConstruction of various nanostructures with nanometre-scale precision through various DNA building blocks depends upon self-assembly, base-pair complementarity and sequence programmability. During annealing, unit tiles are formed by the complementarity of base pairs in each strand. Enhancement of growth of target lattices is expected if seed lattices (i.
View Article and Find Full Text PDFUsing sequence programmability and the characteristics of self-assembly, DNA has been utilized in the construction of various nanostructures and the placement of specific patterns on lattices. Even though many complex structures and patterns formed by DNA assembly have been reported, the fabrication of multi-domain patterns in a single lattice has rarely been discussed. Multi-domains possessing specifically designed patterns in a single lattice provide the possibility to generate multiple patterns that enhance the pattern density in a given single lattice.
View Article and Find Full Text PDFNanofiber fabrication is attracting great attention from scientists and technologists due to its applications in many fields of life. In order to design a nanosized polymer-based drug delivery system, we studied the conditions for the fabrication of electrospun nanofibers from poly (vinyl alcohol) (PVA) and chitosan (CS), which are well-known as biocompatible, biodegradable and non-toxic polymers that are widely used in the medical field. Aiming to develop nanofibers that can directly target diseased cells for treatment, such as cancerous cells, the ideal choice would be a system that contains the highest CS content as well as high quality fibers.
View Article and Find Full Text PDFMultiple models and simulations have been proposed and performed to understand the mechanism of the various pattern formations existing in nature. However, the logical implementation of those patterns through efficient building blocks such as nanomaterials and biological molecules is rarely discussed. This study adopts a cellular automata model to generate simulation patterns (SPs) and experimental patterns (EPs) obtained from DNA lattices similar to the discrete horizontal brown-color line-like patterns on the bark of the Zelkova serrata tree, known as lenticels [observation patterns (OPs)].
View Article and Find Full Text PDFTarget-oriented cellular automata with computation are the primary challenge in the field of DNA algorithmic self-assembly in connection with specific rules. We investigate the feasibility of using the principle of cellular automata for mathematical subjects by using specific logic gates that can be implemented into DNA building blocks. Here, we connect the following five representative elementary functions: (i) enumeration of multiples of 2, 3, and 4 (demonstrated R094, R062, and R190 in 3-input/1-output logic rules); (ii) the remainder of 0 and 1 (R132); (iii) powers of 2 (R129); (iv) ceiling function for /2 and /4 (R152 and R144); and (v) analogous pattern of annihilation (R184) to DNA algorithmic patterns formed by specific rules.
View Article and Find Full Text PDFNature manifests diverse and complicated patterns through efficient physical, chemical, and biological processes. One of the approaches to generate complex patterns, as well as simple patterns, is the use of the cellular automata algorithm. However, there are certain limitations to produce such patterns experimentally due to the difficulty of finding candidate programmable building blocks.
View Article and Find Full Text PDFIn the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate-graphene oxide (Cu-BTC/GO) composite. The sensor was prepared by drop-casting Cu-BTC/GO suspension onto the electrode surface followed by electrochemical reduction, leading to the generation of an electrochemically reduced graphene oxide network (ErGO). By combining the large specific area of the Cu-BTC matrix with the electrical percolation from the graphene network, the number of accessible reaction sites was strongly increased, which consequently improved the detection performance.
View Article and Find Full Text PDFHyaluronic acid, curcumin, and usnic acid are separately utilized as effective biological agents in medicine, and materials based on its blend are considered to have wider therapeutic effects than individual ones. In this study, for the first time, native hyaluronic acid-based fibers containing curcumin and usnic acid with an average diameter of 298 nm were successfully prepared by the electrospinning technique and characterized. Additionally, unstable and hydrophobic curcumin and usnic acid were loaded into the hydrophilic hyaluronic acid matrix without utilizing the activating (catalyzing) agents, resulting in the formation of an electrospinnable solution.
View Article and Find Full Text PDF