Polymer mechanochemistry is a promising technology to convert mechanical energy into chemical functionality by breaking covalent and supramolecular bonds site-selectively. Yet, the mechanochemical reaction rates of covalent bonds in typically used ultrasonication setups lead to reasonable conversions only after comparably long sonication times. This can be accelerated by either increasing the reactivity of the mechanoresponsive moiety or by modifying the encompassing polymer topology.
View Article and Find Full Text PDFCollagen in the form of fibers or fibrils is an essential source of strength and structural integrity in most organs of the human body. Recently, with the help of complex experimental setups, a paradigm change concerning the mechanical contribution of proteoglycans (PGs) took place. Accordingly, PG connections protect the surrounding collagen fibrils from over-stretching rather than transmitting load between them.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
Strain-induced crystallization is a unique crystallization process taking place solely in polymers subjected to large deformations. It plays a major role for reinforcement and improvement of mechanical properties of polymers with a high regularity of the molecular structure. In this paper, we develop a micromechanical model for the strain-induced crystallization in filled rubbers.
View Article and Find Full Text PDF