The advent of high-throughput sequencing technologies made it possible to obtain large volumes of genetic information, quickly and inexpensively. Thus, many efforts are devoted to unveiling the biological roles of genomic elements, being the distinction between protein-coding and long non-coding RNAs one of the most important tasks. We describe RNAsamba, a tool to predict the coding potential of RNA molecules from sequence information using a neural network-based that models both the whole sequence and the ORF to identify patterns that distinguish coding from non-coding transcripts.
View Article and Find Full Text PDF