Publications by authors named "Vsevolod I Razumovskiy"

Copper (Cu) in steel production can be a residual element, causing challenges during steel processing, as well as an alloying element, improving corrosion resistance and providing hardenability by nanosized precipitates. For the transition toward a green economy, increased recycling rates in steel production and alternative energy carriers, such as hydrogen, are of vital importance. As hydrogen is known for its embrittling effect on high-strength steels, this work sought to explore possible mitigation strategies for hydrogen embrittlement (HE) with the help of Cu precipitates.

View Article and Find Full Text PDF

Topologically close-packed (TCP) phases such as Laves phases are usually considered to harm the mechanical properties of classical superalloys for high-temperature applications. However, if an optimal fraction and size are designed, this situation can completely change for some compositionally complex alloys (CCA). Based on existing studies on austenitic or ferritic steels, we propose in this paper a design strategy aimed at exploiting the role of the Laves phase in defining the mechanical properties of wrought CCAs at elevated temperatures.

View Article and Find Full Text PDF

The efficient energy use in multiple sectors of modern industry is partly based on the efficient use of high-strength, high-performance alloys that retain remarkable mechanical properties at elevated and high temperatures. High-entropy alloys (HEAs) represent the most recent class of these materials with a high potential for high-temperature high-strength applications. Aside from their chemical composition and microstructure-property relationship, limited information on the effect of heat treatment as a decisive factor for alloy design is available in the literature.

View Article and Find Full Text PDF

Precipitation hardened and tempered martensitic-ferritic steels (TMFSs) are used in many areas of our daily lives as tools, components in power generation industries, or in the oil and gas (O&G) industry for creep and corrosion resistance. In addition to the metallurgical and forging processes, the unique properties of the materials in service are determined by the quality heat treatment (HT). By performing a quenching and partitioning HT during an in situ high energy synchrotron radiation experiment in a dilatometer, the evolution of retained austenite, martensite laths, dislocations, and carbides was characterized in detail.

View Article and Find Full Text PDF

Fundamental understanding of H localization in steel is an important step towards theoretical descriptions of hydrogen embrittlement mechanisms at the atomic level. In this paper, we investigate the interaction between atomic H and defects in ferromagnetic body-centered cubic (bcc) iron using density functional theory (DFT) calculations. Hydrogen trapping profiles in the bulk lattice, at vacancies, dislocations and grain boundaries (GBs) are calculated and used to evaluate the concentrations of H at these defects as a function of temperature.

View Article and Find Full Text PDF

Mechanical properties of FeCrMn-based steels are of major importance for practical applications. In this work, we investigate mechanical properties of disordered paramagnetic fcc FeCr 10 ⁻ 16 Mn 12 ⁻ 32 alloys using density functional theory. The effects of composition and temperature changes on the magnetic state, elastic properties and stacking fault energies of the alloys are studied.

View Article and Find Full Text PDF