Purpose: This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation.
Methods: A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation.
Purpose: Organ autosegmentation efforts to date have largely been focused on adult populations, due to limited availability of pediatric training data. Pediatric patients may present additional challenges for organ segmentation. This paper describes a dataset of 359 pediatric chest-abdomen-pelvis and abdomen-pelvis Computed Tomography (CT) images with expert contours of up to 29 anatomical organ structures to aid in the evaluation and development of autosegmentation algorithms for pediatric CT imaging.
View Article and Find Full Text PDF