Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles.
View Article and Find Full Text PDFLegionella pneumophila survives and replicates within a Legionella-containing vacuole (LCV) of amoebae and macrophages. Less is known about the carbon metabolism of the bacteria within the LCV. We have now analyzed the transfer and usage of amino acids from the natural host organism Acanthamoeba castellanii to Legionella pneumophila under in vivo (LCV) conditions.
View Article and Find Full Text PDFLegionella pneumophila is a Gram-negative freshwater agent which multiplies in specialized nutrient-rich vacuoles of amoebae. When replicating in human alveolar macrophages, Legionella can cause Legionnaires' disease. Recently, we identified a new type of conjugation/type IVA secretion system (T4ASS) in L.
View Article and Find Full Text PDFLegionella pneumophila (Lp) is the causative agent of Legionnaires' disease, an atypical pneumonia. Lp is found in freshwater habitats and replicates within different protozoa (amoebae). It is known that Lp uses amino acids as primary energy and carbon sources for replication.
View Article and Find Full Text PDFLegionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L.
View Article and Find Full Text PDF