Solid waste management in low- and middle-income countries like India faces significant challenges due to the increasing waste generation that surpasses the current capacity. Therefore, the informal waste sector (IWS) is more vital than ever in handling consumer waste alongside municipal solid waste management (SWM) systems. However, the integration of the IWS into formal waste management systems remains unresolved due to adverse social and economic conditions.
View Article and Find Full Text PDFThe Safe by Design (SbD) concept aims to ensure the production, use and disposal of materials and products safely. While there is a growing interest in the potential of SbD to support policy commitments, such as the EU Green Deal and the Circular Economy Action Plan in Europe, methodological approaches and practical guidelines on SbD are, however, largely missing. The combined use of Life Cycle Assessment (LCA) and Risk Assessment (RA) is considered suitable to operationalize SbD over the whole life-cycle of a product.
View Article and Find Full Text PDFThe widespread use of engineered nanomaterials (ENMs) in consumer products and the overwhelming uncertainties in their ecological and human health risks have raised concerns regarding their safety among industries and regulators. There has been an ongoing debate over the past few decades on ways to overcome the challenges in assessing and mitigating nano-related risks, which has reached a phase of general consensus that nanotechnology innovation should be accompanied by the application of the precautionary principle and best practice risk management, even if the risk assessment uncertainties are large. We propose a quantitative methodology for selecting the optimal risk control strategy based on information about human health and ecological risks, efficacy of risk mitigation measures, cost and other contextual factors.
View Article and Find Full Text PDFThe use of nano-scale copper oxide (CuO) and basic copper carbonate (Cu(OH)CO) in both ionic and micronized wood preservatives has raised concerns about the potential of these substances to cause adverse humans health effects. To address these concerns, we performed quantitative (probabilistic) human health risk assessment (HHRA) along the lifecycles of these formulations used in antibacterial and antifungal wood coatings and impregnations by means of the EU FP7 SUN project's Decision Support System (SUNDS, www.sunds.
View Article and Find Full Text PDFHarmful algal blooms (HABs) have received greater attention in recent years due to an increase in the frequency of outbreaks and a growing potential for blooms to exact considerable economic losses and negatively impact ecosystem health. Human activity has been shown to intensify HAB outbreaks through increased eutrophication, elevated local air and water temperatures, disturbance of the thermal stratification of lakes, and modification of local hydrology. With the advent of new remediation technologies and a better understanding of the ecological factors affecting HABs, mitigating the adverse effects of HABs has become more feasible than ever before but still requires balancing mitigation efficiency, environmental impacts, costs, and stakeholder needs.
View Article and Find Full Text PDFThe international dialogue on responsible governance of nanotechnologies engages a wide range of actors with conflicting as well as common interests. It is also characterised by a lack of evidence-based data on uncertain risks of in particular engineered nanomaterials. The present paper aims at deepening understanding of the collective decision making context at international level using the grounded theory approach as proposed by Glaser and Strauss in "The Discovery of Grounded Theory" (1967).
View Article and Find Full Text PDFIt has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure "changes or evolves its state during its operation," according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation.
View Article and Find Full Text PDF