Publications by authors named "Vrinda Gote"

mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant.

View Article and Find Full Text PDF

Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis.

View Article and Find Full Text PDF

Lcn2 overexpression in metastatic breast cancer (MBC) can lead to cancer progression by inducing the epithelial-to-mesenchymal transition and enhancing tumor angiogenesis. In this study, we engineered a PEGylated liposomal system encapsulating lipocalin 2 (Lcn2) small interfering RNA (Lcn2 siRNA) for selective targeting MBC cell line MCF-7 and triple-negative breast cancer cell line MDA-MB-231. The PEGylated liposomes were decorated with octreotide (OCT) peptide.

View Article and Find Full Text PDF

Active targeting and overcoming multi-drug resistance (MDR) can be some of the important attributes of targeted therapy for metastatic breast cancer (MBC) and triple-negative breast cancer (TNBC) treatment. In this study, we constructed a hyaluronic acid (HA)-decorated mixed nanomicelles-encapsulating chemotherapeutic agent paclitaxel (PTX) and P-glycoprotein inhibitor ritonavir (RTV). HA was conjugated to poly (lactide) co-(glycolide) (PLGA) polymer by disulfide bonds (HA-ss-PLGA).

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (AMD) is characterized by an increase in reactive oxygen species (ROS) and pro-inflammatory cytokines in the retinal pigment epithelium cells. The primary purpose of this study was the development of a clear, tacrolimus nanomicellar formulation (TAC-NMF) for AMD. The optimized formulation had a mean diameter of 15.

View Article and Find Full Text PDF

Age related macular degeneration (AMD) is one of the leading causes of visual loss and is responsible for approximately 9% of global blindness. It is a progressive eye disorder seen in elderly people (>65 years) mainly affecting the macula. Lutein, a carotenoid, is an antioxidant, and has shown neuroprotective properties in the retina.

View Article and Find Full Text PDF

Aim: To prepare and characterise lutein-loaded polylactide--glycolide-polyethylene glycol-folate (PLGA-PEG-FOLATE) nanoparticles and evaluate enhanced uptake in SK-N-BE(2) cells.

Methods: Nanoparticles were prepared using O/W emulsion solvent evaporation and characterised using DLS, SEM, DSC, FTIR and in-vitro release. Lutein-uptake in SK-N-BE(2) cells was determined using flow-cytometry, confocal-microscopy and HPLC.

View Article and Find Full Text PDF

Introduction: Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers.

View Article and Find Full Text PDF

: Proteins and peptides are prominent therapeutic agents, which are effective in number of ailments. Long-term delivery of protein and peptide therapeutics requires polymeric encapsulation to protect from degradation and for its sustained release. However, results from encapsulation of protein macromolecules in dynamic delivery systems report unreliable clinical outcome, indicating ease of degradation, low permeability, and serious immune responses.

View Article and Find Full Text PDF

Ocular drug delivery has always been a challenge for ophthalmologists and drug-delivery scientists due to the presence of various anatomic and physiologic barriers. Inimitable static and dynamic ocular barriers not only exclude the entry of xenobiotics but also discourage the active absorption of therapeutic agents. Designing an ideal delivery scheme should include enhanced drug bioavailability and controlled release of drug at the site of action, which can overcome various ocular barriers.

View Article and Find Full Text PDF

Cequa®, a unique and first-in-class preservative free cyclosporine-A (CsA) nanomicellar topical formulation was recently approved by US FDA for treatment of dry eye disease or keratoconjuntivitis sicca (KCS). Being highly hydrophobic, CsA is currently available as an oil based emulsion, which has its own shortcomings. Developing an aqueous and clear formulation of CsA is imperative yet a challenging need in the quest for a safe and better drug product.

View Article and Find Full Text PDF