FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity.
View Article and Find Full Text PDFForkhead transcription factors of the FOXO class are negatively regulated by PKB/c-Akt in response to insulin/IGF signalling, and are involved in regulating cell cycle progression and cell death. Here we show that, in contrast to insulin signalling, low levels of oxidative stress generated by treatment with H2O2 induce the activation of FOXO4. Upon treatment of cells with H2O2, the small GTPase Ral is activated and this results in a JNK-dependent phosphorylation of FOXO4 on threonine 447 and threonine 451.
View Article and Find Full Text PDFThe serine/threonine kinase protein kinase B (PKB/c-Akt) acts downstream of the lipid kinase phosphoinositide 3-kinase (PI3K) and functions as an essential mediator in many growth-factor-induced cellular responses such as cell cycle regulation, cell survival and transcriptional regulation. PI3K activation generates 3'-phosphorylated phosphatidylinositol lipids (PtdIns3P) and PKB activation requires PtdIns3P-dependent membrane translocation and phosphorylation by upstream kinases. However PKB activation and function is also regulated by interaction with other proteins.
View Article and Find Full Text PDFThe phosphatidylinositol-3-OH-kinase (PI(3)K) effector protein kinase B regulates certain insulin-responsive genes, but the transcription factors regulated by protein kinase B have yet to be identified. Genetic analysis in Caenorhabditis elegans has shown that the Forkhead transcription factor daf-16 is regulated by a pathway consisting of insulin-receptor-like daf-2 and PI(3)K-like age-1. Here we show that protein kinase B phosphorylates AFX, a human orthologue of daf-16, both in vitro and in vivo.
View Article and Find Full Text PDFActivation of phosphatidylinositide 3'-OH kinase (PI 3-kinase) is implicated in mediating a variety of growth factor-induced responses, among which are the inactivation of glycogen synthase kinase-3 (GSK-3) and the activation of the serine/threonine protein kinase B (PKB). GSK-3 inactivation occurs through phosphorylation of Ser-9, and several kinases, such as protein kinase C, mitogen-activated protein kinase-activated protein kinase-1 (p90(Rsk)), p70(S6kinase), and also PKB have been shown to phosphorylate this site in vitro. In the light of the many candidates to mediate insulin-induced GSK-3 inactivation we have investigated the role of PKB by constructing a PKB mutant that exhibits dominant-negative function (inhibition of growth factor-induced activation of PKB at expression levels similar to wild-type PKB), as currently no such mutant has been reported.
View Article and Find Full Text PDFThe small GTPase Rap 1A is a close relative of Ras that, when overexpressed, is able to revert oncogenic transformation induced by active Ras. We screened a mouse embryonic cDNA library using the yeast two-hybrid system and isolated the cDNA of a novel Rap 1A-interacting protein. The open reading frame encodes for an 84 kDa protein with a Cdc25-homology domain which shares approximately 30% identity with Ral guanine nucleotide dissociation stimulator (RalGDS) and RalGDS-like (Rg1).
View Article and Find Full Text PDFWe report that expressing interfering mutants of the small Ras-related GTPase Rac, using either recombinant vaccinia virus or stable DNA transfection, eliminates epidermal growth factor-induced Ca2+ signaling, without affecting Ca2+ mobilization or influx from G protein-coupled receptors. Platelet-derived growth factor-dependent Ca2+ influx, however, is only partly sensitive to dominant negative Rac proteins. Thus, whereas epidermal growth factor-induced Ca2+ influx is completely mediated by Rac proteins, platelet-derived growth factor-induced Ca2+ influx involves Rac-dependent and -independent signaling pathways.
View Article and Find Full Text PDFWe have used two approaches to identify possible substrates of the insulin receptor (IR) tyrosine kinase. First, we used a potent tyrosine phosphatase inhibitor, phenylarsine oxide (PAO), which is reported to be specific for the insulin-induced signal transduction route, to augment tyrosine phosphorylation. Second, we used src homology 2 (SH2) domains fused to glutathione S-transferase as high affinity binding agents for tyrosine-phosphorylated proteins.
View Article and Find Full Text PDFSeveral tyrosine-phosphorylated proteins have been identified that associate with p120GAP, the GTPase activating protein of p21ras. In keratinocytes, calcium induced the tyrosine phosphorylation of a 65 kDa p120GAP-associated protein (p65Ca). This protein did not comigrate with two previously reported p120GAP-associated proteins, i.
View Article and Find Full Text PDFGrowth factor-induced stress fiber formation involves signal transduction through Rac and Rho proteins and production of leukotrienes from arachidonic acid metabolism. In exploring the relationship between these pathways, we found that Rac is essential for EGF-induced arachidonic acid production and subsequent generation of leukotrienes and that Rac V12, a constitutively activated mutant of Rac, generates leukotrienes in a growth factor-independent manner. Leukotrienes generated by EGF or Rac V12 are necessary and sufficient for stress fiber formation.
View Article and Find Full Text PDFAssociation of the p21ras guanine nucleotide exchange factor mSOS with tyrosine-phosphorylated Shc has been implicated in the activation of p21ras. In addition, after growth factor stimulation mSOS becomes phosphorylated as indicated by the appearance of a form of mSOS with reduced electrophoretic mobility. This phosphorylation is delayed with respect to Shc-Grb2-mSOS complex formation and activation of p21ras.
View Article and Find Full Text PDFActivation of growth factor receptor tyrosine kinases, such as the epidermal growth factor and insulin receptors, induces tyrosine phosphorylation of Shc proteins and their association with the SH2 domain-containing adaptor protein Grb2. The Shc-Grb2 complex has been implicated in coupling these receptors to p21ras. The B cell antigen receptor plays a key role in directing B cell proliferation and differentiation.
View Article and Find Full Text PDFShc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras.
View Article and Find Full Text PDFExpression of p21rasAsn-17, a dominant negative mutant of p21ras that blocks p21ras activation by growth factors, inhibits activation of extracellular signal-regulated kinase 2 (ERK2) by insulin and platelet-derived growth factor in rat-1 cells [A. M. M.
View Article and Find Full Text PDFWe have investigated whether complex formation between the p21ras GTPase-activating protein (GAP) and the phosphotyrosine-containing proteins p62 and p190 is dependent on functional p21ras, to test the hypothesis that binding of p21rasGTP to GAP enables GAP to associate with these phosphoproteins. The formation of p21rasGTP was inhibited by a dominant interfering mutant of p21ras, p21ras(Asn-17), which was introduced with a vaccinia virus expression system. We used NIH3T3 cells in which complex formation between GAP and tyrosine-phosphorylated p62 and p190 can be induced either by v-src transformation, by incubating the cells with the phosphotyrosine phosphatase inhibitor pervanadate or by activation of a growth factor receptor tyrosine kinase.
View Article and Find Full Text PDFA number of growth factors, including insulin and epidermal growth factor (EGF), induce accumulation of the GTP-bound form of p21ras. This accumulation could be caused either by an increase in guanine nucleotide exchange on p21ras or by a decrease in the GTPase activity of p21ras. To investigate whether insulin and EGF affect nucleotide exchange on p21ras, we measured binding of [alpha-32P]GTP to p21ras in cells permeabilized with streptolysin O.
View Article and Find Full Text PDFMany growth factors upon stimulation of their receptors induce the activity of extracellular signal-regulated kinases, ERKs, also known as MAP kinases. Several of these growth factors also activate the ras proto-oncogene product, p21ras (Ras), by stimulating the conversion of the inactive GDP-bound form of Ras to the active GTP-bound form. We have shown that direct introduction of p21ras oncoprotein into cells in the absence of growth factors activates ERKs within five minutes, which indicates that normal p21ras may be involved in the activation of ERKs by growth factors.
View Article and Find Full Text PDFp21ras GAP is phosphorylated on tyrosine residues and associates with 62 kDa and 190 kDa tyrosine phosphorylated proteins in v-src-transformed fibroblasts. We were interested in identifying the tyrosine kinase responsible for phosphorylation of GAP and the two associated proteins. Here, we report that GAP-immunoprecipitates from v-src transformed cells contain a tyrosine kinase activity that phosphorylates GAP, p62 and p190.
View Article and Find Full Text PDF