Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching.
View Article and Find Full Text PDFIn the influenza virus ribonucleoprotein complex, the oligomerization of the nucleoprotein is mediated by an interaction between the tail-loop of one molecule and the groove of the neighboring molecule. In this study, we show that phosphorylation of a serine residue (S165) within the groove of influenza A virus nucleoprotein inhibits oligomerization and, consequently, ribonucleoprotein activity and viral growth. We propose that nucleoprotein oligomerization in infected cells is regulated by reversible phosphorylation.
View Article and Find Full Text PDFIn influenza A virus-infected cells, replication and transcription of the viral genome occurs in the nucleus. To be packaged into viral particles at the plasma membrane, encapsidated viral genomes must be exported from the nucleus. Intriguingly, the nuclear export protein (NEP) is involved in both processes.
View Article and Find Full Text PDFMost avian influenza viruses do not replicate efficiently in human cells. This is partly due to the low activity of the RNA polymerase of avian influenza viruses in mammalian cells. Nevertheless, this impediment can be overcome through an E→K adaptive mutation at residue 627 of the PB2 subunit of the polymerase.
View Article and Find Full Text PDFNegative-strand RNA viruses represent a significant class of important pathogens that cause substantial morbidity and mortality in human and animal hosts worldwide. A defining feature of these viruses is that their single-stranded RNA genomes are of opposite polarity to messenger RNA and are replicated through a positive-sense intermediate. The replicative intermediate is thought to exist as a complementary ribonucleoprotein (cRNP) complex.
View Article and Find Full Text PDFTranscription and replication of the influenza A virus RNA genome are mediated by the viral RNA polymerase from a promoter consisting of the partially base-paired 3' and 5' termini of viral genome segments. Here we show that transcription and replication can be uncoupled by mutation of an unpaired adenosine in the 5' strand of the promoter. This residue is important for transcription but not replication by being essential for the cap-binding activity of the RNA polymerase.
View Article and Find Full Text PDFThe nucleoprotein of negative-strand RNA viruses forms a major component of the ribonucleoprotein complex that is responsible for viral transcription and replication. However, the precise role of nucleoprotein in viral RNA transcription and replication is not clear. Here we show that nucleoprotein of influenza A virus is entirely dispensable for replication and transcription of short viral RNA-like templates in vivo, suggesting that nucleoprotein represents an elongation factor for the viral RNA polymerase.
View Article and Find Full Text PDFThe influenza virus nucleoprotein (NP) is believed to play a central role in directing a switch from RNA genome transcription to replication by the viral RNA polymerase. However, this role has recently been disputed with the proposal of alternative regulatory mechanisms. It has been suggested that the expression of viral polymerase and NP allows genome replication by stabilization of cRNA replication intermediates and complementary ribonucleoprotein (cRNP) assembly.
View Article and Find Full Text PDFThe influenza A virus genome consists of eight RNA segments that associate with the viral polymerase proteins (PB1, PB2, and PA) and nucleoprotein (NP) to form ribonucleoprotein complexes (RNPs). The viral NS1 protein was previously shown to associate with these complexes, although it was not clear which RNP component mediated the interaction. Using individual TAP (tandem affinity purification)-tagged PB1, PB2, PA, and NP, we demonstrated that the NS1 protein interacts specifically with NP and not the polymerase subunits.
View Article and Find Full Text PDFViruses induce an antiviral host response by activating the expression of antiviral host genes. However, viruses have evolved a wide range of strategies to counteract antiviral host responses. One of the strategies used by many viruses is the general inhibition of host gene expression, also referred to as a host shut-off mechanism.
View Article and Find Full Text PDFThe PB2 subunit of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. However, the molecular mechanisms involved remain unknown. It was previously shown that the PB2 protein, in addition to its nuclear localization, also accumulates in the mitochondria.
View Article and Find Full Text PDFRNA segment 8 (NS) of influenza A virus encodes two proteins. The NS1 protein is translated from the unspliced primary mRNA transcript, whereas the second protein encoded by this segment, NS2/NEP, is translated from a spliced mRNA. Splicing of influenza NS1 mRNA is thought to be regulated so that the levels of NS2 spliced transcripts are approximately 10 % of total NS mRNA.
View Article and Find Full Text PDFRIG-I is a key mediator of antiviral immunity, able to couple detection of infection by RNA viruses to the induction of interferons. Natural RIG-I stimulatory RNAs have variously been proposed to correspond to virus genomes, virus replication intermediates, viral transcripts, or self-RNA cleaved by RNase L. However, the relative contribution of each of these RNA species to RIG-I activation and interferon induction in virus-infected cells is not known.
View Article and Find Full Text PDFInfluenza viruses induce a host shut off mechanism leading to the general inhibition of host gene expression in infected cells. Here, we report that the large subunit of host RNA polymerase II (Pol II) is degraded in infected cells and propose that this degradation is mediated by the viral RNA polymerase that associates with Pol II. We detect increased ubiquitylation of Pol II in infected cells and upon the expression of the viral RNA polymerase suggesting that the proteasome pathway plays a role in Pol II degradation.
View Article and Find Full Text PDFThe influenza virus RNA polymerase transcribes the negative-sense viral RNA segments (vRNA) into mRNA and replicates them via complementary RNA (cRNA) intermediates into more copies of vRNA. It is not clear how the relative amounts of the three RNA products, mRNA, cRNA and vRNA, are regulated during the viral life cycle. We found that in viral ribonucleoprotein (vRNP) reconstitution assays involving only the minimal components required for viral transcription and replication (the RNA polymerase, the nucleoprotein and a vRNA template), the relative levels of accumulation of RNA products differed from those observed in infected cells, suggesting a regulatory role for additional viral proteins.
View Article and Find Full Text PDFThe mechanisms regulating the synthesis of mRNA, cRNA, and viral genomic RNA (vRNA) by the influenza A virus RNA-dependent RNA polymerase are not fully understood. Previous studies in our laboratory have shown that virion-derived viral ribonucleoprotein complexes synthesize both mRNA and cRNA in vitro and early in the infection cycle in vivo. Our continued studies showed that de novo synthesis of cRNA in vitro is more sensitive to the concentrations of ATP, CTP, and GTP than capped-primer-dependent synthesis of mRNA.
View Article and Find Full Text PDFThe mechanisms regulating the synthesis of mRNA, cRNA, and viral genomic RNA (vRNA) by the influenza A virus RNA-dependent RNA polymerase are not fully understood. Early results suggested that the RNA polymerase "switched" from a transcriptase to a replicase during the viral life cycle in response to the expression of viral proteins. However, recently an alternative model suggesting that replication of influenza virus is regulated by stabilization of the replicative intermediates was proposed.
View Article and Find Full Text PDFThe influenza virus RNA-dependent RNA polymerase interacts with the serine-5 phosphorylated carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). It was proposed that this interaction allows the viral RNA polymerase to gain access to host mRNA-derived capped RNA fragments required as primers for the initiation of viral mRNA synthesis. Here, we show, using a chromatin immunoprecipitation (ChIP) analysis, that similar amounts of Pol II associate with Pol II promoter DNAs in influenza virus-infected and mock-infected cells.
View Article and Find Full Text PDFVarious mechanisms are used by single-stranded RNA viruses to initiate and control their replication via the synthesis of replicative intermediates. In general, the same virus-encoded polymerase is responsible for both genome and antigenome strand synthesis from two different, although related promoters. Here we aimed to elucidate the mechanism of initiation of replication by influenza virus RNA polymerase and establish whether initiation of cRNA and viral RNA (vRNA) differed.
View Article and Find Full Text PDFThe RNA-dependent RNA polymerase of influenza A virus is responsible for both transcription and replication of negative-sense viral RNA. It is thought that a "switching" mechanism regulates the transition between these activities. We demonstrate that, in the presence of preexisting viral RNA polymerase and nucleoprotein (NP), influenza A virus synthesizes both mRNA (transcription) and cRNA (replication) early in infection.
View Article and Find Full Text PDFThe genomic sequences of 3 strains of Lumpy skin disease virus (LSDV) (Neethling type) were compared to determine molecular differences, viz. the South African vaccine strain (LW), a virulent field-strain from a recent outbreak in South Africa (LD), and the virulent Kenyan 2490 strain (LK). A comparison between the virulent field isolates indicates that in 29 of the 156 putative genes, only 38 encoded amino acid differences were found, mostly in the variable terminal regions.
View Article and Find Full Text PDFOnderstepoort J Vet Res
June 2001
A triple one-step RT-PCR was developed to screen and differentiate virulent from avirulent Newcastle disease virus (NDV) isolates. Three sets of oligonucleotides were designed, each specific for amplifying NDV fusion protein gene-specific RNA from virulent, avirulent or all isolates respectively. The sensitivity of one-step RT-PCR was determined using viral RNA extracted from serially diluted NDV-infected allantoic fluid and found to be 10(-5) HA units.
View Article and Find Full Text PDFThe genome segments encoding the seven structural proteins of African horse sickness virus (AHSV), including the largest coding for VP1, were cloned and sequenced. Analysis of the VP1 sequence supports the putative identity of this protein as an RNA polymerase. The genes encoding the two major core proteins, VP3 and VP7, were also cloned and expressed by both in vitro translation and by means of recombinant baculoviruses.
View Article and Find Full Text PDFA strategy was developed for sequence-independent synthesis and amplification of full-length cDNA of 3-4 kb genes of dsRNA viruses. The method of single primer amplification (Lambden et al., 1992) was adapted by the inclusion of a 3' poly(A) tail to an oligonucleotide ligated to dsRNA genome segments as a template for oligo(dT)-primed cDNA synthesis.
View Article and Find Full Text PDFThe gene encoding the inner core protein VP1 of African horse sickness virus (AHSV) serotype 9 has been cloned, expressed in vitro and entirely sequenced, completing molecular characterization of the AHSV genome. An analysis of the sequence supporting the identity of AHSV VP1 as the putative viral RNA polymerase is presented.
View Article and Find Full Text PDF