Publications by authors named "Vredenberg W"

We provide here a brief Tribute to Christiaan Sybesma (1928-2018), a highly respected biophysicist of our time. We remember him by giving a brief highlight of his life and a glimpse of his outstanding contributions in photosynthesis. He was a charming and highly respected scientist of our time.

View Article and Find Full Text PDF

Paper describes principles and application of a novel routine that enables the quantitative analysis of the photochemical O-J phase of the variable fluorescence F v associated with the reversible photo-reduction of the secondary electron acceptor QA of photosystem II (PSII) in algae and intact leaves. The kinetic parameters that determine the variable fluorescence F (PP)(t) associated with the release of photochemical quenching are estimated from 10 µs time-resolved light-on and light-off responses of F v induced by two subsequent light pulses of 0.25 (default) and 1000 ms duration, respectively.

View Article and Find Full Text PDF

This study reports on kinetics of the fluorescence decay in a suspension of the alga Scenedesmus quadricauda after actinic illumination. These are monitored as the variable fluorescence signal in the dark following light pulses of variable intensity and duration. The decay reflects the restoration of chlorophyll fluorescence quenching of the photosystem II (PSII) antennas and shows a polyphasic pattern which suggests the involvement of different processes.

View Article and Find Full Text PDF

This paper describes experiments on transient changes in chlorophyll a fluorescence in traps of the carnivorous plant Venus flytrap (Dionaea muscipula) that occur in association with mechanical stimulation of trigger hairs and propagation of action potentials (APs). The experiments show the following reproducible effects of APs on the fluorescence induction (Kautsky-, or OJIPSMT curve) in a 100 s low intensity light pulse (i) no change in the OJ phase attributed to release of photochemical quenching, (ii) a small enhancement, if at all of increase in the thermal JIP phase, (iii) a two- to threefold deceleration of the fluorescence decline (quenching) during the PSMT phase in the 2-100 s time range, and (iv) a transient 15-50% increase in variable fluorescence within ~20 s under steady state light condition with, after ~80 s, a 10% undershoot that reverses in several tens of seconds to the original steady state. The results are discussed in terms of a hypothesis that the fluorescence decline during the SMT phase of the Kautsky induction curve, attributed to NPQ, is caused by the Δμ(H+)-driven increase in proton conductance of the CF(o) channel of the ATPase during its activation.

View Article and Find Full Text PDF

Chlorophyll fluorescence induction curves induced by an actinic pulse of red light follow different kinetics in dark-adapted plant leaves and leaves preilluminated with far-red light. This influence of far-red light was abolished in leaves infiltrated with valinomycin known to eliminate the electrical (Δφ) component of the proton-motive force and was strongly enhanced in leaves infiltrated with nigericin that abolishes the ΔpH component. The supposed influence of ionophores on different components of the proton motive force was supported by differential effects of these ionophores on the induction curves of the millisecond component of chlorophyll delayed fluorescence.

View Article and Find Full Text PDF

Background: The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts.

View Article and Find Full Text PDF

Paper describes chlorophyll a fluorescence measurements in algal cells, and intact plant leaves and isolated chloroplasts. It focuses on amplitude and 10 μs-resolved kinetics of variable fluorescence responses upon excitation with fluorescence-saturating pulses (SP) and with 25 μs saturating single turnover flashes (STF) which are exposed before, during and after a 100 s actinic illumination (AL) of low and high intensity. In addition to the amply documented suppression of the maximal variable fluorescence from F(m) to F(m)('), the relative proportion of the distinguished O-J-, J-I- and I-P-phases of an SP-induced response is shown to be distinctly different in dark- and light-adapted leaves.

View Article and Find Full Text PDF

Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated several times.

View Article and Find Full Text PDF

In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI.

View Article and Find Full Text PDF

Redox transients of chlorophyll P700, monitored as absorbance changes DeltaA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII+PSI- exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET).

View Article and Find Full Text PDF

Quantitative data on laser flash-induced variable fluorescence in the 100 ns to 1 ms time range (Belyaeva et al. in Photosynth Res 98:105-119, 2008) confirming those of others (Steffen et al. in Biochemistry 40:173-180, 2001, Biochemistry 44:3123-3132, 2005; Belyaeva et al.

View Article and Find Full Text PDF

This paper deals with kinetics and properties of variable fluorescence in leaves and thylakoids upon excitation with low intensity multi-turnover actinic light pulses corresponding with an excitation rate of about 10 Hz. These show a relatively small and amply documented rise in the sub-s time range towards the plateau level F(pl) followed by a delayed and S-shaped rise towards a steady state level F(m) which is between three and four fold the initial dark fluorescence level F(o). Properties of this retarded slow rise are i) rate of dark recovery is (1-6 s)(-1), ii) suppression by low concentration of protonophores, iii) responsiveness to complementary single turnover flash excitation with transient amplitude towards a level F(m) which is between five and six fold the initial dark fluorescence level F(o) and iv) in harmony with and quantitatively interpretable in terms of a release of photoelectrochemical quenching controlled by the trans-thylakoid proton pump powered by the light-driven Q cycle.

View Article and Find Full Text PDF

Plants resistant to triazine-type herbicides are known to be altered in their photosystem II reaction center. Serine at site 264 in D1 protein is replaced by glycine. The measurements of chlorophyll a fluorescence excitations with a variable number of saturating flashes in Chenopodium album plants show characteristic differences between the resistant and the wild-type plants.

View Article and Find Full Text PDF

The algorithm for simulation of the OJDIP fluorescence induction curve in chloroplasts under variable conditions is presented. It is derived from analyzes of chlorophyll a fluorescence kinetics upon excitation with single- (STF), twin- (TTF) and repetitive STF excitations, and from the rate equations that describe the sequence of transfer steps associated with the reduction of the primary quinone acceptor Q(A) and the release of photochemical fluorescence quenching of photosystem II (PSII) in multi-turnover excitation (MTF). The fluorescence induction algorithm (FIA) considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P component (phase) which probably is associated with a photo-electric interaction between PSI and PSII.

View Article and Find Full Text PDF

The fluorescence induction F(t) of dark-adapted chloroplasts has been studied in multi-turnover 1 s light flashes (MTFs). A theoretical expression for the initial fluorescence rise is derived from a set of rate equations that describes the sequence of transfer steps associated with the reduction of the primary quinone acceptor Q (A) and the release of photochemical fluorescence quenching of photosystem II (PSII). The initial F(t) rise in the hundreds of mus time range is shown to follow the theoretical function dictated by the rate constants of light excitation (k (L)) and release of donor side quenching (k ( si )).

View Article and Find Full Text PDF

The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves.

View Article and Find Full Text PDF

Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor Q(A) of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F (o) towards a maximum F (m) (STF) when Q(A) becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20-30% increase when the second partner is applied within 20-100 micros after the first one.

View Article and Find Full Text PDF

The effects of ultraviolet-B (UV-B) radiation on photosystem II (PS II) were studied in leaves of Chenopodium album. After the treatment with UV-B the damage was estimated using chlorophyll a fluorescence techniques. Measurements of modulated fluorescence using a pulse amplitude modulated fluorometer revealed that the efficiency of photosystem II decreased both with increasing time of UV-B radiation and with increasing intensity of the UV-B.

View Article and Find Full Text PDF

The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay.

View Article and Find Full Text PDF

The effects of Photosystem II inhibiting herbicides, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), atrazine and two novel 2-benzylamino-1,3,5-triazine compounds, on photosynthetic oxygen evolution and chlorophyll a fluorescence induction were measured in thylakoids isolated from Chenopodium album (wild type and atrazine-resistant plants) and cyanobacterial intact cells. The resistant plants have a mutation of serine for glycine at position 264 of the D1 protein. Diuron and two members of a novel class of 2-benzylamino-1,3,5-triazine compounds were almost as active in wild-type as in atrazine-resistant thylakoids, indicating that the benzylamino substitution in the novel triazines may be important for the lack of resistance in these atrazine-resistant plants.

View Article and Find Full Text PDF

A set of expressions is derived which quantifies the chlorophyll fluorescence yield in terms of rate constants of primary light reactions of PSII, the fraction of open and semi-open RCs and of the electric field sensed by the RC in the thylakoid membrane. The decay kinetics of the chlorophyll fluorescence yield after a single turnover excitation in the presence of DCMU show at least two components, one reversible within approx. 1 s and one with a dark reversion lasting more than 30 s.

View Article and Find Full Text PDF

Pulse-amplitude modulated microfluorometry and an extracellular pH microprobe were used to examine light-induced spatial heterogeneity of photosynthetic and H(+)-transporting activities in cells of Chara corallina Klein ex Willd. Subcellular domains featuring different PSII photochemical activities were found to conform to alternate alkaline and acid zones produced near the cell surface, with peaks of PSII activity correlating with the position of acid zones. Buffers eliminated pH variations near the cell surface but did not destroy the variations in PSII photochemical yield (deltaF/Fm').

View Article and Find Full Text PDF

Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range.

View Article and Find Full Text PDF

The effect of electric field on chlorophyll fluorescence is considered on the basis of the reversible radical pair model. The hypothesis is presented that the electric fields generated by photosynthetic charge separation in reaction centers and propagated laterally through the thylakoid lumen are associated with changes in chlorophyll fluorescence yield.

View Article and Find Full Text PDF