Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish.
View Article and Find Full Text PDFIn the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research.
View Article and Find Full Text PDFThe analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection of animal positions and pose. Pose and position can be assessed with video analysis programs, the "trackers." Most available trackers represent animals as single points in space (no pose information available) or use markers to build a skeletal representation of pose.
View Article and Find Full Text PDF