Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging problems in occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: (1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically matched equilibrium-based model; (2) test, using the foregoing control-based finite element model, the validity of the follower load (FL) concept suggested in the geometrically matched model; and (3) investigate the effect of change in the magnitude of the external load on trunk muscle activation patterns.
View Article and Find Full Text PDFBackground: The development of endoscopic sinus surgery (ESS) training simulators for clinical environment applications has reduced the existing shortcomings in conventional teaching methods, creating a standard environment for trainers and trainees in a more accurate and repeatable fashion.
Materials And Methods: In this research, the validation study of an ESS training simulator has been addressed. It is important to consider components that guide trainees to improve their hand movements control in the orbital floor removal in an ESS operation.
The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS) training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation.
View Article and Find Full Text PDFBackground: An essential requirement for performing robotic-assisted surgery on a freely beating heart is a prediction algorithm that can estimate the future heart trajectory.
Method: Heart motion, respiratory volume (RV) and electrocardiogram (ECG) signal were measured from two dogs during thoracotomy surgery. A comprehensive multimodality prediction algorithm was developed based on the multivariate autoregressive model to incorporate the heart trajectory and cardiorespiratory data with multiple inherent measurement rates explicitly.
An essential requirement for performing robotic assisted surgery on a freely beating heart is a prediction algorithm which can estimate the future trajectory of the heart in the varying heart rate (HR) conditions of real surgery with a high accuracy. In this study, a hybrid amplitude modulation- (AM) and autoregressive- (AR) based algorithm was developed to enable estimating the global and local oscillations of the beating heart, raised from its major and minor physiological activities. The AM model was equipped with an estimator of the heartbeat frequency to compensate for the HR variations.
View Article and Find Full Text PDFThis article presents the thorough design procedure, specifications, and performance of a mobile social robot friend Arash for educational and therapeutic involvement of children with cancer based on their interests and needs. Our research focuses on employing Arash in a pediatric hospital environment to entertain, assist, and educate children with cancer who suffer from physical pain caused by both the disease and its treatment process. Since cancer treatment causes emotional distress, which can reduce the efficiency of medications, using social robots to interact with children with cancer in a hospital environment could decrease this distress, thereby improving the effectiveness of their treatment.
View Article and Find Full Text PDFTrolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software.
View Article and Find Full Text PDFBackground: Accurate tracking of the heart surface motion is a major requirement for robot assisted beating heart surgery.
Method: The feasibility of a stereo infrared tracking system for measuring the free beating heart motion was investigated by experiments on a heart motion simulator, as well as model surgery on a dog.
Results: Simulator experiments revealed a high tracking accuracy (81 μm root mean square error) when the capturing times were synchronized and the tracker pointed at the target from a 100 cm distance.
Trolling mode atomic force microscope (TR-Mode AFM) significantly reduces the hydrodynamic drag generated during operation in liquid environments. This is achieved by utilizing a long nanoneedle and keeping the cantilever out of liquid. In this research, a continuous mathematical model is developed to study TR-Mode AFM dynamics near a sample submerged in the liquid.
View Article and Find Full Text PDFIn this research, nonlinear dynamics of an air-ehandling unit (AHU) is studied for tracking objectives, in the presence of harmonic perturbations. Three arbitrary realistic set-paths are considered for the indoor temperature and relative humidity. Two controllers based on feedback linearization (FBL) and pole placement approaches are designed to preserve the dynamic system around the desired tracking paths.
View Article and Find Full Text PDFTo guarantee the safety and efficient performance of the power plant, a robust controller for the boiler-turbine unit is needed. In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to control a nonlinear multi-input multi-output (MIMO) model of industrial boiler-turbine unit, in the presence of unknown bounded uncertainties and external disturbances. To overcome the coupled nonlinearities and investigate the zero dynamics, input-output linearization is performed, and then the new decoupled inputs are derived.
View Article and Find Full Text PDFIn this paper, an adaptive robust control strategy is developed for the manipulation of drug usage and consequently the tumor volume in cancer chemotherapy. Three nonlinear mathematical cell-kill models including log-kill hypothesis, Norton-Simon hypothesis and E(max) hypothesis are considered in the presence of uncertainties. The Lyapunov stability theorem is used to investigate the global stability and tracking convergence of the process response.
View Article and Find Full Text PDFDespite development of accurate musculoskeletal models for human lumbar spine, the methods for prediction of muscle activity patterns in movements lack proper association with corresponding sensorimotor integrations. This paper uses the directional information of the Jacobian of the musculoskeletal system to orchestrate adaptive critic-based fuzzy neural controller modules for controlling a complex nonlinear redundant musculoskeletal system. The proposed controller is used to control a 3D 3-degree of freedom (DOF) musculoskeletal model of trunk, actuated by 18 muscles.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2013
During the drug delivery process in chemotherapy, both of the cancer cells and normal healthy cells may be killed. In this paper, three mathematical cell-kill models including log-kill hypothesis, Norton-Simon hypothesis and Emax hypothesis are considered. Three control approaches including optimal linear regulation, nonlinear optimal control based on variation of extremals and H∞-robust control based on μ-synthesis are developed.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Robot-mediated rehabilitation is a rapidly advancing discipline that seeks to develop improved treatment procedures using new technologies, e.g., robotics, coupled with modern theories in neuroscience and rehabilitation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
The design of a laparoscopic haptic device based on a 4-DOFs mechanism and Series Elastic Actuators (SEA) is described and the results of the theoretical and experimental examinations are presented. With a sufficient bandwidth and low impedance, the system provided a stable interaction with soft tissues, e.g.
View Article and Find Full Text PDFThe main scope of this study is to analyse muscle-driven forward dynamics simulation of stair locomotion to understand the functional differences of individual muscles during the movement. A static optimization was employed to minimize a performance criterion based on the muscle energy consumption to resolve muscle redundancy during forward dynamics simulation. The proposed method was employed to simulate a musculoskeletal system with ten degrees of freedom in the sagittal plane and containing 18 Hill-type musculotendon actuators per leg.
View Article and Find Full Text PDFMaximal strength measurements of the trunk have been used to evaluate the maximum functional capacity of muscles and the potential mechanical overload or overuse of the lumbar spine tissues in order to estimate the risk of developing musculoskeletal injuries. A new triaxial isometric trunk strength measurement system was designed and developed in the present study, and its reliability and performance was investigated. The system consisted of three main revolute joints, equipped with torque sensors, which intersect at L5-S1 and adjustment facilities to fit the body anthropometry and to accommodate both symmetric and asymmetric postures in both seated and standing positions.
View Article and Find Full Text PDFProc Inst Mech Eng H
August 2009
The aim of this study is to employ feedback control loops to provide a stable forward dynamics simulation of human movement under repeated position constraint conditions in the environment, particularly during stair climbing. A ten-degrees-of-freedom skeletal model containing 18 Hill-type musculotendon actuators per leg was employed to simulate the model in the sagittal plane. The postural tracking and obstacle avoidance were provided by the proportional-integral-derivative controller according to the modulation of the time rate change of the joint kinematics.
View Article and Find Full Text PDFStud Health Technol Inform
May 2008
An extension to the classical mass-spring model for more realistic simulation of soft tissues for surgery simulation was proposed. The conventional equations of mass-spring model were generalized for non-linear springs, and model parameters were tuned using experimental data. Results show that the proposed model is fast and interactive, and also demonstrate the typical nonlinear and visco-elastic behaviors of soft tissues well.
View Article and Find Full Text PDF