Publications by authors named "Vosmanska M"

In this study, spherical or hexagonal NaYF:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay.

View Article and Find Full Text PDF

Large (120 nm) hexagonal NaYF:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (,-dimethylacrylamide--2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether--maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM.

View Article and Find Full Text PDF

Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.

View Article and Find Full Text PDF

Upconverting nanoparticles are attracting extensive interest as a multimodal imaging tool. In this work, we report on the synthesis and characterization of gadolinium-enriched upconverting nanoparticles for bimodal magnetic resonance and optical luminescence imaging. NaYF:Gd,Yb,Tm core upconverting nanoparticles were obtained by a thermal coprecipitation of lanthanide oleate precursors in the presence of oleic acid as a stabilizer.

View Article and Find Full Text PDF

Magnetic nanoparticles of ε-Fe Ga O with the volume-weighted mean size of 17 nm were prepared by thermal treatment of a mesoporous silica template impregnated with metal nitrates and were coated with silica shell of four different thicknesses in the range 6-24 nm. The bare particles exhibited higher magnetization than the undoped compound, 22.4 Am kg at 300 K, and were characterized by blocked state with the coercivity of 1.

View Article and Find Full Text PDF

Ultrafast measurement using dwell times below 100 μs down to 10 μs is a relatively new feature of single particle analysis using ICP-MS. In this study, we tested the effect of shorter dwell times on the particle size detection limit (D). Decreasing dwell times below 100 μs did not lead to a statistically significant decrease in D The particle size detection limit (quadrupole ICP-MS) of silver nanoparticles (NP) was estimated to be approx.

View Article and Find Full Text PDF

The characterisation of inorganic nanoparticles (NPs) by single particle inductively coupled plasma mass spectroscopy is possible only if the spectrometer is capable of measurement with high time-signal resolution. The latest generation of spectrometers allow for measurements with dwell times (dt) shorter than the 100 μs gold standard, i.e.

View Article and Find Full Text PDF

Manganese-zinc ferrite nanoparticles were synthesized by using a hydrothermal treatment, coated with silica, and then tested as efficient cellular labels for cell tracking, using magnetic resonance imaging (MRI) in vivo. A toxicity study was performed on rat mesenchymal stem cells and C6 glioblastoma cells. Adverse effects on viability and cell proliferation were observed at the highest concentration (0.

View Article and Find Full Text PDF

Introduction: Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-FeO) and studied their effect on proliferation and neuronal differentiation.

Materials And Methods: We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability.

View Article and Find Full Text PDF

Rape and other Brassicaceae family plants can accumulate appreciable amounts of thallium from the soil. Because some species of this family are common crops utilised as food for direct consumption or raw materials for food production, thallium can enter the food chain. A useful method for thallium determination is inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Nanomaterials are currently the subject of intense research due to their wide variety of potential applications in the biomedical, optical and electronic fields. We prepared and tested cobalt zinc ferrite nanoparticles (Co0.5Zn0.

View Article and Find Full Text PDF

We prepared new phases for LC that consisted of silica modified with non-covalently bonded tetrakis(β-cyclodextrin)-porphyrin (where cyclodextrin is CD) conjugates. The effects of the porphyrin core, type of spacer and β-CD moieties on the behaviours of the modified phases for the separation of aromatic compounds (benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, pentylbenzene, o-terphenyl, triphenylene, phenol and caffeine) and fluorinated aromatic compounds (pentafluorobenzonitrile, pentafluoronitrobenzene and hexafluorobenzene) were studied using the Tanaka test. The results indicate that the non-covalent substitution of silica with CD-based macromolecules that have a porphyrin core can be a very effective method for preparing novel sorbents with specific chromatographic properties for applications in LC.

View Article and Find Full Text PDF

In this study, bare gold nanoparticles (GNPs) immobilized in the sol-gel-pretreated fused-silica (FS) capillary as a stationary phase for open-tubular capillary electrochromatography (OT-CEC) are for the first time shown to be able to separate both hydrophobic polyaromatic hydrocarbons (PAHs) as well as hydrophilic cationic antimicrobial peptides. Model mixture of four PAHs, naphthalene, fluorene, phenanthrene, and anthracene, was resolved by OT-CEC in the GNP-modified FS capillaries using the hydro-organic background electrolyte (BGE) composed of 20 mmol/L sodium phosphate buffer, pH 7, modified with ACN at 8:2 v/v ratio. On the other hand, three synthetic analogues of an antimicrobial peptide mastoparan PDD-B, basic tetradecapeptides INWKKLGKKILGAL-NH(2), INSLKLGKKILGAL-NH(2) and NWLRLGRRILGAL-NH(2), were separated in aqueous acidic BGEs, pH 2.

View Article and Find Full Text PDF

A new type of high performance liquid chromatography (HPLC) stationary phase was prepared, and its chromatographic properties were evaluated. The sorbent was composed of metallacarborane covalently bound to silica. Because of the chemical structure of the immobilized metallacarborane, the synthesized stationary phase was able to interact with nonpolar analytes via hydrophobic interactions.

View Article and Find Full Text PDF

Objectives: Previously, we found that guaifenesin enhances analgesia induced by paracetamol. The aim of the present study was to determine whether guaifenesin is able to also increase analgesic activity in the non-steroid anti-inflammatory drugs ibuprofen, nimesulide and celecoxib. In addition we investigated the influence of guaifenesin on plasma levels of nimesulide.

View Article and Find Full Text PDF

The phenolic compounds p-hydroxyacetophenone and catechin have been extracted from Norway spruce needles with pure methanol, 80 and 50% (v/v) aqueous methanol, pure acetonitrile, 80% (v/v) aqueous acetonitrile, and pure water. Extraction efficiency of the individual solvents was compared. Although 80% aqueous methanol is the solvent most frequently used for extraction of soluble phenolic compounds from needles, it was found that pure methanol is a more suitable extraction solvent.

View Article and Find Full Text PDF

Biotransformation of acrolein (ACR) was studied in vivo in the rat following inhalation and ip administration. The major and minor urinary metabolites were 3-hydroxypropylmercapturic acid (HPMA) and 2-carboxyethylmercapturic acid (CEMA), respectively. Male Wistar rats were exposed to ACR, 23, 42, 77 and 126 mg/m3, for 1 hr.

View Article and Find Full Text PDF

1. The excretion of urinary metabolites was studied in rat dosed intraperitoneally with ethyl acrylate and 1-butyl acrylate. 2.

View Article and Find Full Text PDF

A simple ion-suppression separation on reversed-phase columns, which is applicable for both analytical and semi-preparative work, is described. Six urinary metabolites of 1,3-diethenylbenzene (I), namely 1-(3-ethenylphenyl)-1,2-dihydroxyethane beta-D-glucosiduronates (two isomers, II and III), N-acetyl-S-[1-(3-ethenylphenyl)-2-hydroxyethyl]cysteine (IV), N-acetyl-S-[2-(3-ethenylphenyl)-2-hydroxyethyl]cysteine (V), 3-ethenylphenylmandelic acid (VI) and 3-ethenylphenylglyoxylic acid (VII), were isolated (Fig. 1).

View Article and Find Full Text PDF

1. Biotransformation of 1,3-diethenylbenzene (1) in rat gave four major metabolites, namely, 3-ethenylphenylglyoxylic acid (2), 3-ethenylmandelic acid (3), N-acetyl-S-[2-(3-ethenylphenyl)-2-hydroxyethyl]-L-cysteine (4) and N-acetyl-S-[1-(3-ethenylphenyl)-2-hydroxyethyl]-L-cysteine (5) were isolated from urine and identified by n.m.

View Article and Find Full Text PDF