Sponges (phylum Porifera) were among the first metazoans on Earth, and represent a unique global source of highly structured and diverse biosilica that has been formed and tested over more than 800 million years of evolution. Poriferans are recognized as a unique archive of siliceous multiscaled skeletal constructs with superficial micro-ornamentation patterned by biopolymers. In the present study, spicules and skeletal frameworks of selected representatives of sponges in such classes as Demospongiae, Homoscleromorpha, and Hexactinellida were desilicified using 10% HF with the aim of isolating axial filaments, which resemble the shape and size of the original structures.
View Article and Find Full Text PDFIn this study, a facile approach for simultaneous determination of dopamine (DA) and tryptophan (TRP) using a 3D goethite-spongin-modified carbon paste electrode is reported. The prepared electrode exhibited excellent electrochemical catalytic activity towards DA and TRP oxidation. The electrochemical sensing of the modified electrode was investigated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy.
View Article and Find Full Text PDFThe structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)].
View Article and Find Full Text PDFSkeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing architecture focused attention. These chitinous scaffolds have already shown excellent and promising results in biomimetics and tissue engineering with respect to their broad diversity of cells. However, the mechanical features of these constructs have been poorly studied before.
View Article and Find Full Text PDFMarine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite.
View Article and Find Full Text PDFAminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton.
View Article and Find Full Text PDFStructural bioinspiration in modern material science and biomimetics represents an actual trend that was originally based on the bioarchitectural diversity of invertebrate skeletons, specifically, honeycomb constructs of natural origin, which have been in humanities focus since ancient times. We conducted a study on the principles of bioarchitecture regarding the unique biosilica-based honeycomb-like skeleton of the deep-sea glass sponge . Experimental data show, with compelling evidence, the location of actin filaments within honeycomb-formed hierarchical siliceous walls.
View Article and Find Full Text PDFThree-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from three species of verongiid demosponges (, and ) as a perfect example of possible morphological and chemical dimorphism in the case of the marine chitin sources. The electrolysis of concentrated NaSO aqueous solution showed its superiority over the chemical chitin isolation method in terms of the treatment time reduction: only 5.
View Article and Find Full Text PDFThe design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers.
View Article and Find Full Text PDFAppl Phys A Mater Sci Process
January 2021
Unlabelled: The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties.
View Article and Find Full Text PDFChitin is the second most abundant biopolymer and functions as the main structural component in a variety of living organisms. In nature, chitin rarely occurs in a pure form, but rather as nanoorganized chitin-proteins, chitin-pigments, or chitin-mineral composite biomaterials. Although chitin has a long history of scientific studies, it is still extensively investigated for practical applications in medicine, biotechnology, and biomimetics.
View Article and Find Full Text PDFObjective: The aim of the present research was to investigate the rheological properties of the medicinal syrup for oral administration with glucosamine hydrochloride and levocarnitine.
Patients And Methods: Matherials and methods: Coefficient of the dynamic flow (at shear rates of 3,49 and 10,3 s -1, as well as at shear rates of 27.2 and 149.
Chitin, as one of nature's most abundant structural polysaccharides, possesses worldwide, high industrial potential and a functionality that is topically pertinent. Nowadays, the metallization of naturally predesigned, 3D chitinous scaffolds originating from marine sponges is drawing focused attention. These invertebrates represent a unique, renewable source of specialized chitin due to their ability to grow under marine farming conditions.
View Article and Find Full Text PDFMarine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively.
View Article and Find Full Text PDFStructure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed.
View Article and Find Full Text PDFNaturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons.
View Article and Find Full Text PDFChitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders.
View Article and Find Full Text PDFMarine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine.
View Article and Find Full Text PDFDiverse fields of modern technology and biomedicine can benefit from the application of ready-to-use chitin-based scaffolds. In this work we show for the first time the applicability of tubular and porous chitin from Caribena versicolor spiders as a scaffold for the development of an effective CuO/Cu(OH) catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AM), and as a scaffold for the tissue engineering of selected cells. The formation of CuO/Cu(OH) phases on and within the chitinous tubes leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol.
View Article and Find Full Text PDFSponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases.
View Article and Find Full Text PDFBackground: The aim of this study was to evaluate the plasma levels of bone turnover markers (BTMs) in male patients with stable angina depending on the bone mineral density (BMD), coronary atherosclerosis (CA) and coronary artery calcification (CAC).
Methods: We recruited 112 males with verified stable angina. All the patients underwent coronary angiography, multislice spiral computed tomography, and dual-energy X-ray absorptiometry.
We carried out retrospective analysis of 219 case histories of patients with chronic heart failure admitted to a general medical hospital. Anemia (hemoglobin level below 130 g/l in men and below 120g/l in women) was found in 23.3% of cases.
View Article and Find Full Text PDF