Publications by authors named "Volter Entoma"

Significant efforts are dedicated to developing new classes of organic semiconductor materials to achieve electrically pumped lasing. However, further advancements are necessary to understand the relationship between the structure and property for the creation of innovative laser materials with high stability, low triplet yield, ultra-low lasing threshold, and low-efficiency roll-off at ultra-bright electroluminescence. Here, a new design principle is validated for organic semiconductor laser materials, demonstrating simultaneous enhancement in the key figures of merit of low amplified spontaneous emission thresholds (E), efficient electroluminescence, and low triplet yields.

View Article and Find Full Text PDF

External quantum efficiency (EQE) roll-off under high current injection has been one of the major limiting factors toward the development of organic semiconductor laser diodes (OSLDs). While significant progress in this regard has been made on organic semiconductors (OSCs) emitting in the blue-green region of the visible spectrum, OSCs with longer wavelength emission (>600 nm) have fallen behind in both material development and the advancement in device architectures suitable for the realization of OSLDs. Therefore, to make simultaneous incremental advancements, a host-guest system comprising of a high performing poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) polymer and an efficient small molecule laser dye, dithiophenyl diketopyrrolopyrrole (DT-DPP), is used.

View Article and Find Full Text PDF