The aim of the present study was to obtain new metal complexes of citrus pectin with cobalt ions based on potassium polygalacturonate and to prepare a new pharmacological composition (PC) PGKCo: PGNaCo (1:1) with antitumor activity based on potassium cobalt polygalacturonate (PGKCo) and sodium cobalt polygalacturonate (PGNaCo). The study of the effect of PGKCo, PGNaCo and PC on the cell viability of tumor cell lines of different genesis in vitro showed that the obtained compounds are soluble in water and exhibit selective cytotoxic activity against the tumor cell lines of human lung carcinoma A549, breast adenocarcinoma MCF-7 and cervical carcinoma M-HeLa, with no significant toxic effect on normal human cells. The possible mechanism of action of the investigated PC on M-HeLa cancer cells was investigated.
View Article and Find Full Text PDFDisruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.
View Article and Find Full Text PDFOne of the main modern approaches to the creation of effective drugs is the design of new biologically active substances containing two or more pharmacophore groups in their structure. In recent years, there have been many publications on the synthesis and study of biological activity, including antitumour activity, of new organo-arsenic compounds. It is known that spatially hindered phenols can also have antitumor activity, so the synthesis and study of hybrid compounds based on organo-arsenic compounds and spatially hindered phenols is a relevant area of research.
View Article and Find Full Text PDFA series of new isatin-3-hydrazones bearing different ammonium fragments was synthesized by a simple and easy work-up reaction of Girard's reagents analogs with 1-(3,5-di--butyl-4-hydroxybenzyl)isatin. All derivatives have been shown to have antioxidant properties. In terms of bactericidal activity against gram-positive bacteria, including methicillin-resistant strains of , the best compounds are , , and , bearing octyl, acetal, and brucine ammonium centers, respectively.
View Article and Find Full Text PDFAn approach to the synthesis of phosphoryl substituted spiro-1,3-dioxolane oxindoles was developed from the base-catalyzed reaction of various isatins with (3-hydroxyprop-1-yn-1-yl)phosphonates. It was found that various aryl-substituted and N-functionalized isatins with the formation of appropriate products with high yields and stereoselectivity when using -BuOLi are able to react. Cytotoxic activity evaluation suggests that the most significant results in relation to the HuTu 80 cell line were shown by N-benzylated spirodioxolanes.
View Article and Find Full Text PDFA family of bifunctional dihetarylmethanes and dibenzoxanthenes is assembled via a reaction of acetals containing a 2-chloroacetamide moiety with phenols and related oxygen-containing heterocycles. These compounds demonstrated selective antitumor activity associated with the induction of cell apoptosis and inhibition of the process of glycolysis. In particular, bis(heteroaryl)methane containing two 4-hydroxy-6-methyl-2-pyran-2-one moieties combine excellent in vitro antitumor efficacy with an IC of 1.
View Article and Find Full Text PDFA series of the first conjugates of N-acetyl-d-glucosamine with α-aminophosphonates was synthesized using the Kabachnik-Fields reaction, the Pudovik reaction, a copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) and evaluated for the in vitro cytotoxicity against human cancer cell lines M - HeLa, HuTu-80, A549, PANC-1, MCF-7, T98G and normal lung fibroblast cells WI-38. The tested conjugates, with exception of compound 21b, considered as a lead compound, were either inactive against the used cancer cells or showed moderate cytotoxicity in the range of IC values 33-80 μM. The lead compound 21b, being non cytotoxic against normal human cells WI-38 (IC = 90 μM), demonstrated good activity (IC = 17 μM) against breast adenocarcinoma cells (MCF-7) which to be 1.
View Article and Find Full Text PDFThe unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture.
View Article and Find Full Text PDFDevelopment of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.
View Article and Find Full Text PDFA general method for chemo- and diastereoselective modification of anticancer natural product arglabin with nitrogen- and carbon-centered pronucleophiles under the influence of nucleophilic phosphine catalysts was developed. The locked s-cis-geometry of α-methylene-γ-butyrolactone moiety of arglabin favors for the additional stabilization of the zwitterionic intermediate by electrostatic interaction between phosphonium and enolate oxygen centers, leading to the unprecedentedly high efficiency of the phosphine-catalyzed Michael additions to this sesquiterpene lactone. Using n-BuP as the catalyst, pyrazole, phthalimide, 2-oxazolidinone, 4-quinazolinone, uracil, thymine, cytosine, and adenine adducts of arglabin were obtained.
View Article and Find Full Text PDFThis paper has been supported by the Kazan Federal University Strategic Academic Leadership Program ('PRIORITY-2030'). HRMS data were obtained in the CSF-SAC FRC KSC RAS by support of the State Assignment of the Federal Research Center "Kazan Scientific Center", Russian Academy of Sciences. A.
View Article and Find Full Text PDFThe biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups.
View Article and Find Full Text PDFCurrently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% /), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% /) abietic acid and . resin ().
View Article and Find Full Text PDFThe present work demonstrates the structure variation of hexarhenium anionic cluster units [{ReS}(CN)(OH)] (n = 0, 2, 4) as the strategy to develop Mn-containing nanoparticles (NPs) exhibiting pH-dependent leaching. The dicyanotetrahydroxo complex [{ReS}(CN)(OH)] is the optimal for the synthesis of the Mn-based NPs with a lamellar shape exhibiting the pH-dependent aggregation and magnetic relaxation behavior. The pH-dependent behavior of the NPs derives from the easy protonation of the apical hydroxo ligands of [{ReS}(CN)(OH)] cluster, which triggers partial leaching of Mn ions and aggregation of the NPs driven by the surface neutralization.
View Article and Find Full Text PDFAntimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups.
View Article and Find Full Text PDFIn this work, we describe the synthesis, interactions with bovine serum albumin, and cytotoxicity of new ionic liquids based on 5-fluorouracil (API-ILs) with different cations (imidazolium, choline, isoquinolinium, guanidinium). The secondary and tertiary structure of BSA in solutions with different concentrations of API-ILs was monitored by the circular dichroism (CD) technique. The addition of API-ILs does not lead to structural changes in BSA.
View Article and Find Full Text PDFGold(I) complexes of LAuCl composition based on PN ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp- or sp-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The -aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an -alkyl substituted ligand with a pyramidal nitrogen atom.
View Article and Find Full Text PDFThe creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%).
View Article and Find Full Text PDFThe work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic PN-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of PN-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence.
View Article and Find Full Text PDFIn the present study, the synthesis of oxygen-containing quaternary phosphonium salts (oxy-QPSs) was described. Within this work, structure-property relationships of oxy-QPSs were estimated by systematic analysis of physical-chemical properties. The influence of the oxygen-containing substituent was examined by comparing the properties of oxy-QPSs in homology series as well as with phosphonium analog-included alkyl side chains.
View Article and Find Full Text PDFA series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (), chloro (), or bis-fluoro () substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells.
View Article and Find Full Text PDF