Publications by authors named "Voloshin Y"

Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with -butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeM-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents.

View Article and Find Full Text PDF

A series of monocapped cobalt(II) tris-pyrazoloximates was obtained through the template condensation of the corresponding pyrazoloxime, phenylboronic acid and a suitable cobalt(II) halogenide. Comparing 3-acetylpyrazoloxime its methine-containing homolog, the former produced cobalt(II) clathrochelates in substantially higher yields due to the electron donating effect of the methyl substituent, increasing the N-donor ability of its oxime group. Their less N-donor analog with the electron acceptor trifluoromethyl group did not form cobalt(II) complexes of this type.

View Article and Find Full Text PDF

The energetic demands of modern society for clean energy vectors, such as H, have caused a surge in research associated with homogeneous and immobilized electrocatalysts that may replace Pt. In particular, clathrochelates have shown excellent electrocatalytic properties for the hydrogen evolution reaction (HER). However, the actual mechanism for the HER catalyzed by these -metal complexes remains an open debate, which may be addressed via Operando spectroelectrochemistry.

View Article and Find Full Text PDF

The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib.

View Article and Find Full Text PDF

Combined experimental Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe ion, and, therefore, a decrease in the isomer shift (IS) value (so-called "semiclathrochelate effect").

View Article and Find Full Text PDF

A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate.

View Article and Find Full Text PDF

The title cobalt(II) pseudoclathrochelate complexes possess an intermediate trigonal prismatic-trigonal antiprismatic geometry. As follows from PPMS data, they exhibit an SMM behaviour with Orbach relaxation barriers of approximately 90 K. Paramagnetic NMR experiments confirmed a persistence of these magnetic characteristics in solution.

View Article and Find Full Text PDF

Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(ClGm)(BAd)] (where ClGm is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoCoCo-trinuclear dodecachloro-bis-clathrochelate intracomplex [[Co(ClGm)(BAd)]Co] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co ions, which are cross-linked by a μ-bridging Co ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species.

View Article and Find Full Text PDF

Hybrid metallo(IV)phthalocyaninate-capped tris-dioximate iron(II) complexes (termed as "phthalocyaninatoclathrochelates") with non-equivalent apical fragments and functionalized with one terminal reactive vinyl group were prepared for the first time using three different synthetic approaches: (i) transmetallation (capping group exchange) of the appropriate labile boron,antimony-capped cage precursors, (ii) capping of the initially isolated reactive semiclathrochelate intermediate, and (iii) direct one-pot template condensation of their ligand synthons on the iron(II) ion as a matrix. The obtained polytopic cage complexes were characterized using elemental analysis, H NMR, MALDI-TOF MS and UV-vis spectra, and the single-crystal X-ray diffraction experiments. One of the obtained vinyl-terminated iron(II) phthalocyaninatoclathrochelates and its semiclathrochelate precursor were tested as monomers in a copolymerization reaction with styrene as the main component.

View Article and Find Full Text PDF

Kinetics and thermodynamics of the template synthesis and of the acidic decomposition of the methylboron-capped iron(II) tris-1,2-dioximates-the clathrochelate derivatives of six (nioxime)- and eight (octoxime)-membered alicyclic ligand synthons-were compared. In the case of a macrobicyclic iron(II) tris-nioximate, the plausible pathway of its formation contains a rate-determining stage and includes a reversible formation of an almost trigonal-antiprismatic (TAP) protonated tris-complex, followed by its monodeprotonation and addition of CHB(OH). Thus, the formed TAP intermediate undergoes a multistep rate-determining stage of double cyclization with the elimination of two water molecules accompanied by a structural rearrangement, thus giving an almost trigonal-prismatic (TP) iron(II) semiclathrochelate.

View Article and Find Full Text PDF

A synthetic strategy for obtaining structurally flexible hybrid iron(II) carboranoclatrochelates functionalized with biorelevant groups, based on a combination of a 1,3-dipolar cycloaddition reaction with nucleophilic substitution of an appropriate chloroclathrochelate precursor, was developed. In its first stage, a stepwise substitution of the dichloroclathrochelate precursor with amine -nucleophiles of different natures in various solvents was performed. One of its two chlorine atoms with morpholine or diethylamine in dichloromethane gave reactive monohalogenoclathrochelate complexes functionalized with abiorelevant substituents.

View Article and Find Full Text PDF

A fluorescein-tagged iron(ii) cage complex was obtained in a moderate total yield using a two-step synthetic procedure starting from its propargylamine-containing clathrochelate precursor. An 11-fold decrease in fluorescence quantum yield is observed in passing from the given fluorescein-based dye to its clathrochelate derivative. An excitation energy transfer from the terminal fluorescent group of the macrobicyclic molecule to its quasiaromatic highly π-conjugated clathrochelate framework can explain this effect.

View Article and Find Full Text PDF

The in situ spectroelectrochemical cyclic voltammetric studies of the antimony-monocapped nickel(II) and iron(II) tris-pyridineoximates with a labile triethylantimony cross-linking group and Zr(IV)/Hf(IV) phthalocyaninate complexes were performed in order to understand the nature of the redox events in the molecules of heterodinuclear zirconium(IV) and hafnium(IV) phthalocyaninate-capped derivatives. Electronic structures of their 1e-oxidized and 1e-electron-reduced forms were experimentally studied by electron paramagnetic resonance (EPR) spectroscopy and UV-vis-near-IR spectroelectrochemical experiments and supported by density functional theory (DFT) calculations. The investigated hybrid molecular systems that combine a transition metal (pseudo)clathrochelate and a Zr/Hf-phthalocyaninate moiety exhibit quite rich redox activity both in the cathodic and in the anodic region.

View Article and Find Full Text PDF

Recognition of elements of protein tertiary structure is crucial for biotechnological and biomedical tasks; this makes the development of optical sensors for certain protein surface elements important. Herein, we demonstrated the ability of iron(II) clathrochelates (-) functionalized with mono-, di- and hexa-carboxyalkylsulfide to induce selective circular dichroism (CD) response upon binding to globular proteins. Thus, inherently CD-silent clathrochelates revealed selective inducing of CD spectra when binding to human serum albumin (HSA) (, ), beta-lactoglobuline () and bovine serum albumin (BSA) ().

View Article and Find Full Text PDF
Article Synopsis
  • A new cobalt(II) complex was synthesized using 2-acetylpyrazoloxime, phenylboronic acid, and a cobalt(II) solvato complex with decachloro-decabortate dianion, confirmed by X-ray diffraction analysis.
  • The complex features two symmetry-independent cations, a decachloro-decabortate dianion, and solvent molecules that provide hydrogen bonding interactions, resulting in a nearly ideal tetrahedral geometry around the cobalt ions.
  • Magnetic studies show the complex has significant magnetic anisotropy and behaves like a single molecule magnet, with the potential for substitution of its DMF capping molecules influencing its overall magnetic properties.
View Article and Find Full Text PDF

Cage metal complexes iron(ii) clathrochelates, which are inherently CD silent, were discovered to demonstrate intensive output in induced circular dichroism (ICD) spectra upon their assembly to albumins. With the aim to design clathrochelates as protein-sensitive CD reporters, the approach for the functionalization of one chelate α-dioximate fragment of the clathrochelate framework with two non-equivalent substituents was developed, and constitutional isomers of clathrochelate with two non-equivalent carboxyphenylsulfide groups were synthesized. The interaction of designed iron(ii) clathrochelates and their symmetric homologues with globular proteins (serum albumins, lysozyme, β-lactoglobulin (BLG), trypsin, insulin) was studied by protein fluorescence quenching and CD techniques.

View Article and Find Full Text PDF

Herein, we report a new trigonal prismatic cobalt(II) complex that behaves as a single molecule magnet. The obtained zero-field splitting, which is also directly accessed by THz-EPR spectroscopy (-102.5 cm ), results in a large magnetization reversal barrier U of 205 cm .

View Article and Find Full Text PDF

An ability of inherently achiral macrobicyclic metal complexes iron(ii) clathrochelates to acquire an induced CD (ICD) output in the visible spectral range upon interaction with bovine serum albumin (BSA) was recently discovered. In the present work, the CD-reporting properties of iron(ii) clathrochelates to proteins and the thermodynamic parameters of their binding to albumins are evaluated. It is shown that iron(ii) clathrochelates functionalized by six ribbed carboxyphenylsulfide groups are able to discriminate between serum albumins of relative structure (here human and bovine albumins) by giving distinct ICD spectra.

View Article and Find Full Text PDF

Zero-field splitting (ZFS) of three high-spin Co(I) ( S = 1) clathrochelate complexes was determined by frequency-domain Fourier-transform THz-EPR (FD-FT THz-EPR). The following axial and rhombic ZFS values ( D and E, respectively) were determined: [N( n-Bu)]Co(GmCl)(BPh) (1, D/ hc = +16.43(1) cm, E/ hc = 0.

View Article and Find Full Text PDF

Variable-temperature NMR spectroscopy has recently emerged as a new alternative to the magnetometry methods for studying single molecule magnets. Its use is based on an accurate determination of magnetic susceptibility tensor anisotropy Δχ, which is not always achievable due to some contact contribution to NMR chemical shifts and possible conformational dynamics. Here, we applied this approach to cholesteryl-substituted cage cobalt(II) complexes featuring a very large magnetic anisotropy.

View Article and Find Full Text PDF

A new approach for performing Suzuki-Miyaura and Sonogashira reactions of iron(ii) dihalogenoclathrochelates, optimizing their reaction conditions (such as temperature, solvent and a palladium-containing catalyst) and the nature of other reagents (such as arylboron components) is elaborated. These palladium-catalyzed reactions are very sensitive to the nature of the macrobicyclic substrates. The reactivity of the leaving halogen atoms correlates with their ability to undergo an oxidative addition, decreasing in the order: I > Br > Cl, and iron(ii) diiodoclathrochelate underwent these C-C cross-couplings under their "classical" conditions.

View Article and Find Full Text PDF

The first synthesized and X-ray structurally characterized "classical" iron(i) dioximate showed an unrivaled stability towards strong acids, thus calling for a reassessment of the origins of the electrocatalytic activity of similar low-valent cobalt and iron cage complexes with electron-withdrawing ribbed substituents, shown previously to be effective electrocatalysts of the HER.

View Article and Find Full Text PDF

An ability of the ribbed-functionalized iron(ii) clathrochelates to induce a CD output in interactions with a protein, covalent bonding or supramolecular interactions with a low-molecular-weight chiral inductor, was discovered. The interactions of CD inactive, carboxyl-terminated iron(ii) clathrochelates with serum albumin induced their molecular asymmetry, causing an appearance of strong CD signals in the range of 350-600 nm, whereas methyl ester and amide clathrochelate derivatives remained almost CD inactive. The CD spectra of carboxyl-terminated clathrochelates on supramolecular interactions or covalent bonding with (R)-(+)-1-phenylethylamine gave a substantially lower CD output than with albumin, affected by both the solvent polarity and the isomerism of clathrochelate's ribbed substituents.

View Article and Find Full Text PDF

The study tackles one of the challenges in developing platinum-free molecular electrocatalysts for hydrogen evolution, which is to seek for new possibilities to ensure large turnover numbers by stabilizing electrocatalytic intermediates. These species are often much more reactive than the initial electrocatalysts, and if not properly stabilized by a suitable choice of functionalizing substituents, they have a limited long-time activity. Here, we describe new iron and cobalt(II) cage complexes (clathrochelates) that in contrast to many previously reported complexes of this type do not act as electrocatalysts for hydrogen evolution.

View Article and Find Full Text PDF

High magnetic anisotropy is a key property of paramagnetic shift tags, which are mostly studied by NMR spectroscopy, and of single molecule magnets, for which magnetometry is usually used. We successfully employed both these methods in analyzing magnetic properties of a series of transition metal complexes, the so-called clathrochelates. A cobalt complex was found to be both a promising paramagnetic shift tag and a single molecule magnet because of it having large axial magnetic susceptibility tensor anisotropy at room temperature (22.

View Article and Find Full Text PDF