The phase state of heterogeneous systems prepared on the basis of mixtures of hydrophobic and hydrophilic silica and water, depending on the ratio of component concentrations, and their using as thixotropic agents has been studied. It was found that the dependence of the interfacial energy of water with the surface of the particles of the composite system made on the basis of hydrophilic and hydrophobic silica taken in the proportion of 1:1 as for the individually taken AM-1 has a bell-shaped form with peaks at = 3 and 1.5 g/g, respectively.
View Article and Find Full Text PDFInterfacial phenomena linked to the behavior of bound water, organic solvents (co-sorbates, dispersion media), hydrogen, methane, acids/bases, and salts bound to various silicas, polymers, and carbon materials were analyzed vs. temperature and concentrations using H NMR spectroscopy, differential scanning calorimetry (DSC) and other methods. The material characteristics were studied using microscopy, infrared spectroscopy (IR), small angle X-ray scattering (SAXS), and nitrogen adsorption.
View Article and Find Full Text PDFPolymethylsiloxane (PMS) and fumed silica, alone and in a blended form (1:1 w/w), differently pretreated, hydrated, and treated again, were studied using TEM and SEM, nitrogen adsorption-desorption, H MAS and Si CP/MAS NMR spectroscopy, infrared spectroscopy, and methods of quantum chemistry. Analysis of the effects of adding water (0-0.5 g of water per gram of solids) to the blends while they are undergoing different mechanical treatment (stirring with weak (~1-2 kg/cm) and strong (~20 kg/cm) loading) show that both dry and wetted PMS (as a soft material) can be grafted onto a silica surface, even with weak mechanical loading, and enhanced mechanical loading leads to enhanced homogenization of the blends.
View Article and Find Full Text PDFIt is well-known that interaction of hydrophobic powders with water is weak, and upon mixing, they typically form separated phases. Preparation of hydrophobic nanosilica AM1 with a relatively large content of bound water with no formation of separated phases was the aim of this study. Unmodified nanosilica A-300 and initial AM1 (A-300 completely hydrophobized by dimethyldichlorosilane), compacted A-300 (cA-300), and compacted AM1 (cAM1) containing 50-58 wt % of bound water were studied using low-temperature H NMR spectroscopy, thermogravimetry, infrared spectroscopy, microscopy, small-angle X-ray scattering, nitrogen adsorption, and theoretical modeling.
View Article and Find Full Text PDF