Chirality-induced spin selectivity (CISS) is a recently discovered effect, whose precise microscopic origin has not yet been fully elucidated; it seems, however, clear that spin-orbit interaction plays a pivotal role. Various model Hamiltonian approaches have been proposed, suggesting a close connection between spin selectivity and filtering and helical symmetry. However, first-principles studies revealing the influence of chirality on the spin polarization are missing.
View Article and Find Full Text PDFThe interaction of low-energy photoelectrons with well-ordered monolayers of enantiopure helical heptahelicene molecules adsorbed on metal surfaces leads to a preferential transmission of one longitudinally polarized spin component, which is strongly coupled to the helical sense of the molecules. Heptahelicene, composed of only carbon and hydrogen atoms, exhibits only a single helical turn but shows excess in longitudinal spin polarization of about P = 6 to 8% after transmission of initially balanced left- and right-handed spin polarized electrons. Insight into the electronic structure, that is, the projected density of states, and the spin-dependent electron scattering in the helicene molecule is gained by using spin-resolved density functional theory calculations and a model Hamiltonian approach, respectively.
View Article and Find Full Text PDFSpin-orbit interaction in carbon nanotubes has been under debate for several years and a variety of theoretical calculations and experimental results have been published. Here, we present an accurate implementation of spin-orbit interactions in a density-functional theory framework including both core and valence orbital contributions, thus using the full potential of the system. We find that the spin-splitting of the frontier bands of armchair nanotubes is of the order of several μeV and does not strongly depend on the diameter of the nanotube.
View Article and Find Full Text PDFStrong chemical interaction between bacterial surface protein layers and calcium atoms deposited in situ on top was revealed by means of photoemission spectroscopy. The interaction appears to mainly happen at the oxygen site of the peptide bonds and involves a large charge transfer from Ca 4s states into the peptide backbone. Chemical kinetics of this reaction was characterized using time-dependent valence band photoemission, and the reaction rate constant was determined.
View Article and Find Full Text PDFHigh-quality films of copper phthalocyanine (CuPc) prepared in situ were used as a model to characterize unoccupied states of organic molecular semiconductors. We demonstrate that a combination of high-resolution near-edge x-ray absorption together with first-principles calculations constitutes a reliable tool for the detection and identification of particular molecular orbitals.
View Article and Find Full Text PDFUsing density functional theory we perform theoretical investigations of the electronic properties of a freestanding one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multidecker Vn(C6H6)(n+1) clusters which can be synthesized with established methods. We predict that the ground state of the wire is a 100% spin-polarized ferromagnet (half-metal).
View Article and Find Full Text PDFThe reliability of various quantum-chemical approaches for the calculation of bulk properties of lithium tetraborate Li(2)B(4)O(7) was examined. Lattice parameters and the electronic structure obtained with density-functional theory (DFT), with DFT-Hartree-Fock (HF) hybrid methods, and with the semiempirical method MSINDO were compared to available experimental data. We also compared the results at DFT level using different wave functions, either based on linear combinations of atom-centered orbitals (LCAO), or on plane waves, as implemented in the crystalline orbital programs CRYSTAL and VASP.
View Article and Find Full Text PDF