Publications by authors named "Volodymyr Koman"

The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines, and smart dust, has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with microfabrication techniques, creating substantial challenges to realizing microscale energy systems. Here, we photolithographically patterned a microscale zinc/platinum/SU-8 system to generate the highest energy density microbattery at the picoliter (10 liter) scale.

View Article and Find Full Text PDF

Robots have components that work together to accomplish a task. Colloids are particles, usually less than 100 µm, that are small enough that they do not settle out of solution. Colloidal robots are particles capable of functions such as sensing, computation, communication, locomotion and energy management that are all controlled by the particle itself.

View Article and Find Full Text PDF

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores.

View Article and Find Full Text PDF

Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA and GA, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in , lettuce, and basil roots.

View Article and Find Full Text PDF

Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are of significant interest because of their unique photophysical properties, such as single-photon emission at room temperature, and promising applications in quantum computing and communications. The photoemission from hBN defects covers a wide range of emission energies but identifying and modulating the properties of specific emitters remain challenging due to uncontrolled formation of hBN defects. In this study, more than 2000 spectra are collected consisting of single, isolated zero-phonon lines (ZPLs) between 1.

View Article and Find Full Text PDF

There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under conditions.

View Article and Find Full Text PDF

Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta.

View Article and Find Full Text PDF

Spontaneous oscillations on the order of several hertz are the drivers of many crucial processes in nature. From bacterial swimming to mammal gaits, converting static energy inputs into slowly oscillating power is key to the autonomy of organisms across scales. However, the fabrication of slow micrometre-scale oscillators remains a major roadblock towards fully-autonomous microrobots.

View Article and Find Full Text PDF

Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts.

View Article and Find Full Text PDF

Macrophages are a critical part of the human immune response, and their collective heterogeneity is implicated in disease progression and prevention. A nondestructive, label-free tool does not currently exist for profiling the dynamic, antigenic responses of single macrophages in a collection to correlate with specific molecular expression and correlated biophysical properties at the cellular level, despite the potential for diagnosis and therapeutics. Herein, we develop a nanosensor chemical cytometry (NCC) that can profile the heterogeneity of inducible nitric oxide synthase (iNOS) responses from macrophage populations.

View Article and Find Full Text PDF

Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed.

View Article and Find Full Text PDF

Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC).

View Article and Find Full Text PDF

Autonomous electronic microsystems smaller than the diameter of a human hair (<100 μm) are promising for sensing in confined spaces such as microfluidic channels or the human body. However, they are difficult to implement due to fabrication challenges and limited power budget. Here we present a 60 × 60 μm electronic microsystem platform, or SynCell, that overcomes these issues by leveraging the integration capabilities of two-dimensional material circuits and the low power consumption of passive germanium timers, memory-like chemical sensors, and magnetic pads.

View Article and Find Full Text PDF

Carbon nanomaterials have extraordinary thermal properties, such as high conductivity and stability. Nanocarbon combined with phase change materials (PCMs) can yield exceptionally high thermal effusivity composites optimal for thermal energy harvesting. The progress in synthesis and processing of high effusivity materials, and their application in resonant energy harvesting from temperature variations is reviewed.

View Article and Find Full Text PDF

Although the structure and properties of water under conditions of extreme confinement are fundamentally important for a variety of applications, they remain poorly understood, especially for dimensions less than 2 nm. This problem is confounded by the difficulty in controlling surface roughness and dimensionality in fabricated nanochannels, contributing to a dearth of experimental platforms capable of carrying out the necessary precision measurements. In this work, we utilize an experimental platform based on the interior of lithographically segmented, isolated single-walled carbon nanotubes to study water under extreme nanoscale confinement.

View Article and Find Full Text PDF

Decoding wound signalling in plants is critical for understanding various aspects of plant sciences, from pest resistance to secondary metabolite and phytohormone biosynthesis. The plant defence responses are known to primarily involve NADPH-oxidase-mediated HO and Ca signalling pathways, which propagate across long distances through the plant vasculature and tissues. Using non-destructive optical nanosensors, we find that the HO concentration profile post-wounding follows a logistic waveform for six plant species: lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex acetosa) and Arabidopsis thaliana, ranked in order of wave speed from 0.

View Article and Find Full Text PDF

Nanostructured fibers provide a basis for a unique class of multifunctional textiles, composites, and membrane applications, including those capable of chromatic modulating because of their high aspect ratio, surface area, and processing capability. Here in, we utilize two-dimensional (2D) materials including molybdenum disulfide (MoS) and hexagonal boron nitride (hBN) to generate single layer Archimedean scroll fibers, possessing cross sections formed from a single 2D molecular layer. Chemical vapor deposited (CVD) monolayer MoS (0.

View Article and Find Full Text PDF

Plant genetic engineering is an important tool used in current efforts in crop improvement, pharmaceutical product biosynthesis and sustainable agriculture. However, conventional genetic engineering techniques target the nuclear genome, prompting concerns about the proliferation of foreign genes to weedy relatives. Chloroplast transformation does not have this limitation, since the plastid genome is maternally inherited in most plants, motivating the need for organelle-specific and selective nanocarriers.

View Article and Find Full Text PDF

In recent decades, biologists have sought to tag animals with various sensors to study aspects of their behavior otherwise inaccessible from controlled laboratory experiments. Despite this, chemical information, both environmental and physiological, remains challenging to collect despite its tremendous potential to elucidate a wide range of animal behaviors. In this work, we explore the design, feasibility, and data collection constraints of implantable, near-infrared fluorescent nanosensors based on DNA-wrapped single-wall carbon nanotubes (SWNT) embedded within a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel.

View Article and Find Full Text PDF

Plants accumulate solid carbon mass and self-repair using atmospheric CO fixation from photosynthesis. Synthetic materials capable of mimicking this property can significantly reduce the energy needed to transport and repair construction materials. Here, a gel matrix containing aminopropyl methacrylamide (APMA), glucose oxidase (GOx), and nanoceria-stabilized extracted chloroplasts that is able to grow, strengthen, and self-repair using carbon fixation is demonstrated.

View Article and Find Full Text PDF

Graphene and other two-dimensional materials possess desirable mechanical, electrical and chemical properties for incorporation into or onto colloidal particles, potentially granting them unique electronic functions. However, this application has not yet been realized, because conventional top-down lithography scales poorly for producing colloidal solutions. Here, we develop an 'autoperforation' technique that provides a means of spontaneous assembly for surfaces composed of two-dimensional molecular scaffolds.

View Article and Find Full Text PDF

The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented.

View Article and Find Full Text PDF

A previously unexplored property of two-dimensional electronic materials is their ability to graft electronic functionality onto colloidal particles to access local hydrodynamics in fluids to impart mobility and enter spaces inaccessible to larger electronic systems. Here, we demonstrate the design and fabrication of fully autonomous state machines built onto SU-8 particles powered by a two-dimensional material-based photodiode. The on-board circuit connects a chemiresistor circuit element and a memristor element, enabling the detection and storage of information after aerosolization, hydrodynamic propulsion to targets over 0.

View Article and Find Full Text PDF

Materials science has made progress in maximizing or minimizing the thermal conductivity of materials; however, the thermal effusivity-related to the product of conductivity and capacity-has received limited attention, despite its importance in the coupling of thermal energy to the environment. Herein, we design materials that maximize the thermal effusivity by impregnating copper and nickel foams with conformal, chemical-vapor-deposited graphene and octadecane as a phase change material. These materials are ideal for ambient energy harvesting in the form of what we call thermal resonators to generate persistent electrical power from thermal fluctuations over large ranges of frequencies.

View Article and Find Full Text PDF

The 2D semiconductor monolayer transition metal dichalcogenides, WS and MoS , are grown by chemical vapor deposition (CVD) and assembled by sequential transfer into vertical layered heterostructures (VLHs). Insulating hBN, also produced by CVD, is utilized to control the separation between WS and MoS by adjusting the layer number, leading to fine-scale tuning of the interlayer interactions within the VLHs. The interlayer interactions are studied by photoluminescence (PL) spectroscopy and are demonstrated to be highly sensitive to the input excitation power.

View Article and Find Full Text PDF