Publications by authors named "Volodymyr Donchak"

The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or -isopropylacrylamide (NIPAM).

View Article and Find Full Text PDF

Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance.

View Article and Find Full Text PDF

pH-Switchable, fluorescent, hybrid, water-dispersible nanomaterials based on boron nitride nanotubes (BNNTs) and grafted copolymer brushes (poly(acrylic acid--fluorescein acrylate) - P(AA--FA)) were successfully fabricated in a two-step process. The functionalization of BNNTs was confirmed by spectroscopic, gravimetric and imaging techniques. In contrast to "pure" BNNTs, P(AA--FA)-functionalized BNNTs demonstrate intense green fluorescence emission at 520 nm.

View Article and Find Full Text PDF

Poly(oligo(ethylene glycol)ethyl ether methacrylate (POEGMA246) coatings were successfully fabricated using novel approach via polymerization from oligoperoxide grafted to premodified glass substrate. Wettability, content and composition of coatings fabricated with different polymerization times were determined using contact angle measurements, ellipsometry and Time of Flight-Secondary Ion Mass Spectrometry (TOF-SIMS). Thermo- and pH-responsive properties of POEGMA246 coatings were found to depend significantly on concentration of the grafted POEGMA246.

View Article and Find Full Text PDF

Poly(N-isopropylacrylamide) (PNIPAM) coatings attached to glass with novel approach involving polymerization from oligoperoxide grafted to surface with (3-aminopropyl)triethoxysilane exhibit not only temperature- but also pH-dependence of wettability and protein adsorption. Wettability and composition of coatings, fabricated with different polymerization times, were determined using contact angle measurements and Time Of Flight-Secondary Ion Mass Spectrometry (TOF-SIMS), respectively. Thermal response of wettability, measured between 20 and 40°C, was prominent at pH 9 and 7 and diminished or absent at pH 5 and 3.

View Article and Find Full Text PDF