Publications by authors named "Volnova A"

Dopamine dysfunction (DA) is a hallmark of many neurological disorders. In this case, the mechanism of changes in dopamine transmission on behavior remains unclear. This study is a look into the intricate link between disrupted DA signaling, neuronal activity patterns, and behavioral abnormalities in a hyperdopaminergic animal model.

View Article and Find Full Text PDF

Background: Intracerebral cannulation bypasses the blood-brain barrier, and is frequently used for targeted drug delivery to specific brain structures. Despite the availability of brain infusion kits and manual injections without cannulation, the traditional design of guide cannulas continues to be utilized in research. Several protocols describing guide cannula manufacture from stainless steel needles have been published previously.

View Article and Find Full Text PDF

Playing a key role in the organization of striatal motor output, the dopamine (DA)-ergic system regulates both innate and complex learned behaviors. Growing evidence clearly indicates the involvement of the DA-ergic system in different forms of repetitive (perseverative) behavior. Some of these behaviors accompany such disorders as obsessive-compulsive disorder (OCD), Tourette's syndrome, schizophrenia, and addiction.

View Article and Find Full Text PDF

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS.

View Article and Find Full Text PDF

Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases.

View Article and Find Full Text PDF

In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na,K-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction.

View Article and Find Full Text PDF

A product of the immediate early gene Arc (Activity-regulated cytoskeleton-associated protein or Arc protein) of retroviral ancestry resides in the genome of all tetrapods for millions of years and is expressed endogenously in neurons. It is a well-known protein, very important for synaptic plasticity and memory consolidation. Activity-dependent Arc expression concentrated in glutamatergic synapses affects the long-time synaptic strength of those excitatory synapses.

View Article and Find Full Text PDF

This article presents a low-cost and flexible software solution for acoustic startle response (ASR) test that can be used with a Spike2-based interface. ASR is a reflexive response to an unexpected, loud acoustic stimulus, and prepulse inhibition (PPI) is a phenomenon in which the startle response is reduced when preceded by a weak prestimulus of the same modality. Measuring PPI is important because changes in PPI have been observed in patients with various psychiatric and neurological disorders.

View Article and Find Full Text PDF

Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks.

View Article and Find Full Text PDF

Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype.

View Article and Find Full Text PDF

It is known that the trace amine-associated receptor 1 (TAAR1) receptor is involved in limbic brain functions by regulating dopamine transmission and putative reward circuitry. Moreover, other TAARs are expressed in the olfactory system of all studied vertebrate species, sensing innate socially-relevant odors, including pheromones. Therefore, one can assume that TAARs may play a role in rodent social and sexual behavior.

View Article and Find Full Text PDF

Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is manifested by a specific set of behavioral deficits such as hyperactivity, impulsivity, and inattention. The dopamine neurotransmitter system is postulated to be involved in the pathogenesis of ADHD. Guanfacine, a selective α2A-adrenoceptor agonist, is prescribed for ADHD treatment.

View Article and Find Full Text PDF

Gap junctions (GJs) are intercellular junctions that allow the direct transfer of ions and small molecules between neighboring cells, and GJs between astrocytes play an important role in the development of various pathologies of the brain, including regulation of the pathological neuronal synchronization underlying epileptic seizures. Recently, we found that a pathological change is observed in astrocytes during the ictal and interictal phases of 4-aminopyridin (4-AP)-elicited epileptic activity in vitro, which was correlated with neuronal synchronization and extracellular epileptic electrical activity. This finding raises the question: Does this signal depend on GJs between astrocytes? In this study we investigated the effect of the GJ blocker, carbenoxolone (CBX), on epileptic activity in vitro and in vivo.

View Article and Find Full Text PDF

Classical monoamines are well-known modulators of sensorimotor neural networks. However, the role of trace amines and their receptors in sensorimotor function remains unexplored. Using trace amine-associated receptor 5 knockout (TAAR5-KO) mice, that express beta-galactosidase mapping its localization, we observed TAAR5 expression in the Purkinje cells of the cerebellum and the medial vestibular nucleus, suggesting that TAAR5 might be involved in the vestibular and motor control.

View Article and Find Full Text PDF

Gamma-ray bursts (GRBs) are the most energetic and mysterious events in the Universe, which are observed in all ranges of electromagnetic spectrum. Most valuable results about physics of GRB are obtained by optical observations. GRBs are initially detected in gamma-rays with poor localization accuracy, and an optical counterpart should be found.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is believed to be connected with a high level of hyperactivity caused by alterations of the control of dopaminergic transmission in the brain. The strain of hyperdopaminergic dopamine transporter knockout (DAT-KO) rats represents an optimal model for investigating ADHD-related pathological mechanisms. The goal of this work was to study the influence of the overactivated dopamine system in the brain on a motor cognitive task fulfillment.

View Article and Find Full Text PDF

Epilepsy remains one of the most common brain disorders, and the different types of epilepsy encompass a wide variety of physiological manifestations. Clinical and preclinical findings indicate that cerebral blood flow is usually focally increased at seizure onset, shortly after the beginning of ictal events. Nevertheless, many questions remain about the relationship between vasomotor changes in the epileptic foci and the epileptic behavior of neurons and astrocytes.

View Article and Find Full Text PDF

Stereotaxic intracerebral cannula implantation for neuroactive agent administration is a wide-spread method for chronic experiments requiring bypassing the blood-brain barrier in rodents. However, commercially available cannula are bulky and may interfere with animal movement or lead to their dislodging during grooming. As the number of cannula needed in one experiment, and the accompanying costs can be high, it is in the interest of researchers to produce them on their own.

View Article and Find Full Text PDF

Understanding the role of the dopamine system in learning and memory processes is very important for uncovering central mechanisms underlying complex behavioral responses that can be impaired in patients with neuropsychiatric disorders caused by dopamine system dysfunction. One of the most useful animal models for dopaminergic dysregulation is the strain of dopamine transporter knockout (DAT-KO) rats that have no dopamine re-uptake and thus elevated extracellular dopamine levels. It is known that dopamine is involved in various cognitive processes such as learning, memory and attention.

View Article and Find Full Text PDF

Trace amines have been reported to be neuromodulators of monoaminergic systems. Trace amines receptor 5 (TAAR5) is expressed in several regions of mice central nervous system, such as amygdala, arcuate nucleus and ventromedial hypothalamus, but very limited information is available on its functional role. The purpose of this study is to examine the effect of TAAR5 agonist alpha-NETA on the generation of mismatch negativity (MMN) analogue in C57BL/6 mice.

View Article and Find Full Text PDF

Intracerebroventricular (ICV) administration of ouabain, an inhibitor of the Na, K-ATPase, is an approach used to study the physiological functions of the Na, K-ATPase and cardiotonic steroids in the central nervous system, known to cause mania-like hyperactivity in rats. We describe a mouse model of ouabain-induced mania-like behavior. ICV administration of 0.

View Article and Find Full Text PDF

The trace amine-associated receptor 1 (TAAR1) agonist RO5263397 effect on sensory gating in C57BL/6 mice was studied. Sensory gating is a mechanism for dosing and filtering the incoming information, by which the brain regulates the responses to sensory stimuli coming from the environment. Sensory gating deficit is considered to be one of the schizophrenia endophenotypes.

View Article and Find Full Text PDF

The potential contribution of trace amines (TA) to the pathophysiology of neuropsychiatric disorders makes it interesting to examine the effect of TA receptor ligands on schizophrenia biomarkers. We studied the effect of systemic administration of a putative Trace Amine-Associated Receptor 5 (TAAR5) agonist, alpha-NETA (2-(alpha-naphthoyl) ethyltrimethylammonium iodide), on the amplitude of the N40 event related potentials component and on the sensory gating (SG) index in C57BL/6 mice. It was found that low doses of alpha-NETA (2.

View Article and Find Full Text PDF

The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor widely expressed in the mammalian brain, particularly in limbic system and monoaminergic areas. It has proven to be an important modulator of dopaminergic, serotoninergic, and glutamatergic neurotransmission and is considered to be a potential useful target for the pharmacotherapy of neuropsychiatric disorders, including schizophrenia. One of the promising schizophrenia endophenotypes is a deficit in neurocognitive abilities manifested as mismatch negativity (MMN) deficit.

View Article and Find Full Text PDF