Publications by authors named "Volker Siffrin"

Granulomatosis or eosinophilic granulomatosis with polyangiitis (GPA/EGPA) can affect multiple organs resulting in heterogeneous symptoms and phenotypes. Pituitary gland dysfunction rarely occurs in GPA (1-3%) and even less in EGPA (two case reports). Here, we report a case of a 51-year-old female patient with a four-year history of EGPA who presented with new polydipsia and polyuria.

View Article and Find Full Text PDF

Objective: The diagnosis of neurosarcoidosis (NS) remains challenging due to the difficulty to obtain central nervous system (CNS) biopsies. Various diagnostic parameters are considered for the definition of possible, probable and definite NS. Magnetic resonance imaging (MRI) is the imaging gold standard and considered in diagnostic criteria.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sclerosis (MS) is a complex disease with varying outcomes; some patients experience full recovery while others face continuous decline.
  • Researchers developed induced pluripotent stem cells (iPSCs) to study differences between benign MS (BMS) and progressive MS (PMS) by observing how inflammatory cytokines affect neuronal and astrocyte damage.
  • They discovered that astrocytes from BMS provide more neuroprotection than those from PMS, revealing potential therapeutic strategies to enhance astrocyte function and protect neurons from damage.
View Article and Find Full Text PDF

Astrocytes constitute the parenchymal border of the blood-brain barrier (BBB), modulate the exchange of soluble and cellular elements, and are essential for neuronal metabolic support. Thus, astrocytes critically influence neuronal network integrity. In hypoxia, astrocytes upregulate a transcriptional program that has been shown to boost neuroprotection in several models of neurological diseases.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated here the direct and differential effects of inflammatory mediators on human neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Fingolimod can cause low lymphocyte levels, which may increase the risk of severe monkeypox infections.
  • Recent monkeypox outbreaks have been classified as a Public Health Emergency of International Concern.
  • It's important to consider vaccinating multiple sclerosis (MS) patients before starting immunosuppressive treatments, especially those on sphingosine-1-phosphate receptor modulators like Fingolimod.
View Article and Find Full Text PDF

Blood endothelial cells display remarkable plasticity depending on the demands of a malignant microenvironment. While studies in solid tumors focus on their role in metabolic adaptations, formation of high endothelial venules (HEVs) in lymph nodes extends their role to the organization of immune cell interactions. As a response to lymphoma growth, blood vessel density increases; however, the fate of HEVs remains elusive.

View Article and Find Full Text PDF

Fluorine (F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using F MR spectroscopy (MRS).

View Article and Find Full Text PDF

Background: Human preclinical models are crucial for advancing biomedical research. In particular consistent and robust protocols for astrocyte differentiation in the human system are rare.

New Method: We performed a transcriptional characterization of human gliogenesis using embryonic H9- derived hNSCs.

View Article and Find Full Text PDF

Objective: To assess the safety and efficacy of epigallocatechin-3-gallate (EGCG) add-on to glatiramer acetate (GA) in patients with relapsing-remitting multiple sclerosis (RRMS).

Methods: We enrolled patients with RRMS (aged 18-60 years, Expanded Disability Status Scale [EDSS] score 0-6.5), receiving stable GA treatment in a multicenter, prospective, double-blind, phase II, randomized controlled trial.

View Article and Find Full Text PDF

Background: Neutrophil gelatinase-associated lipocalin (NGAL) is a diagnostic marker of intrinsic kidney injury produced by damaged renal cells and by neutrophils. ANCA-associated vasculitis features necrotizing crescentic GN (NCGN), and ANCA-activated neutrophils contribute to NCGN. Whether NGAL plays a mechanistic role in ANCA-associated vasculitis is unknown.

View Article and Find Full Text PDF

Background: Molecular analyses of cell populations and single cells have been instrumental in the advancement of our understanding of the physiology and pathologic processes of the nervous system. However, the limitation of these methods is the dependence on a gentle, efficient and specific enrichment procedure for the target cell population. In particular, this has been challenging for tightly interconnected cells, for example central nervous system (CNS) endogenous cells such as astrocytes.

View Article and Find Full Text PDF

Central nervous system inflammation and neurodegeneration are the pathophysiological hallmarks of multiple sclerosis (MS). While inflammation can readily be targeted by current disease modifying drugs, neurodegeneration is by far less accessible to treatment. Based on suggested additional neuroprotective capacities of the orally available non-opioid and centrally acting analgesic drug flupirtine maleate we hypothesized that treatment with flupirtine maleate might be beneficial in MS patients.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the CNS. Myelin-specific CD4 Th lymphocytes are known to play a major role in both MS and its animal model experimental autoimmune encephalomyelitis (EAE). CCR7 is a critical element for immune cell trafficking and recirculation, that is, lymph node homing, under homeostatic conditions; blocking CCR7 central memory cells from egress of lymph nodes is a therapeutic approach in MS.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear.

View Article and Find Full Text PDF

Counter-balancing regulatory mechanisms, such as the induction of regulatory T cells (Treg), limit the effects of autoimmune attack in neuroinflammation. However, the role of dendritic cells (DCs) as the most powerful antigen-presenting cells, which are intriguing therapeutic targets in this context, is not fully understood. Here, we demonstrate that conditional ablation of DCs during the priming phase of myelin-specific T cells in experimental autoimmune encephalomyelitis (EAE) selectively aborts inducible Treg (iTreg) induction, whereas generation of T helper (Th)1/17 cells is unaltered.

View Article and Find Full Text PDF

Objective: Natalizumab is known to prevent T-helper cells entering the central nervous system (CNS). We hypothesize that more pathogenic T-helper cells are present outside the CNS and a possible relationship to disease severity.

Methods: Characterization and enrichment of human CD4+IL-17+ cells were performed ex vivo using peripheral blood mononuclear cells from natalizumab-treated relapsing-remitting multiple sclerosis (RRMS) patients ( n = 33), untreated RRMS patients ( n = 13), and healthy controls ( n = 33).

View Article and Find Full Text PDF

In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 lymphocytes.

View Article and Find Full Text PDF

Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells.

View Article and Find Full Text PDF

The proneurotrophin receptor sortilin is a protein with dual functions, being involved in intracellular protein transport, as well as cellular signal transduction. The relevance of the receptor for various neuronal disorders, such as dementia, seizures, and brain injury, is well established. In contrast, little is known about the role of sortilin in immune cells and inflammatory diseases.

View Article and Find Full Text PDF

Background: Natalizumab treatment is associated with progressive multifocal leukoencephalopathy (PML) development. Treatment duration, prior immunosuppressant use, and JCV serostatus are currently used for risk stratification, but PML incidence stays high. Anti-JCV antibody index and L-selectin (CD62L) have been proposed as additional risk stratification parameters.

View Article and Find Full Text PDF

Background: Multiple sclerosis is a chronic inflammatory central nervous system disease diagnosed by clinical presentation and characteristic magnetic resonance imaging findings. The role of cerebrospinal fluid (CSF) analysis has been emphasized in particular in the context of differential diagnosis in patients with a first episode suggestive of multiple sclerosis.

Objective: We investigated here the potential additional value of analysis of CSF cellularity by fluorescence activated cell sorting (FACS) in the setting of a routine diagnostic work-up in our inpatient clinic.

View Article and Find Full Text PDF

Infratentorial lesions have been assigned an equivalent weighting to supratentorial plaques in the new McDonald criteria for diagnosing multiple sclerosis. Moreover, their presence has been shown to have prognostic value for disability. However, their spatial distribution and impact on network damage is not well understood.

View Article and Find Full Text PDF

Background: Irreversible axonal and neuronal damage are the correlate of disability in patients suffering from multiple sclerosis (MS). A sustained increase of cytoplasmic free [Ca(2+)] is a common upstream event of many neuronal and axonal damage processes and could represent an early and potentially reversible step.

New Method: We propose a method to specifically analyze the neurodegenerative aspects of experimental autoimmune encephalomyelitis by Förster Resonance Energy Transfer (FRET) imaging of neuronal and axonal Ca(2+) dynamics by two-photon laser scanning microscopy (TPLSM).

View Article and Find Full Text PDF