Publications by authors named "Volker Sievert"

The immune system protects us from foreign substances or pathogens by generating specific antibodies. The variety of immunoglobulin (Ig) paratopes for antigen recognition is a result of the V(D)J rearrangement mechanism, while a fast and efficient immune response is mediated by specific immunoglobulin isotypes obtained through class switch recombination (CSR). To get a better understanding on how antibody-based immune protection works and how it changes with age, the interdependency between these two parameters need to be addressed.

View Article and Find Full Text PDF

For studying human antibody variable (V)-gene usage in any group of individuals or for the generation of recombinant human antibody libraries for phage display, quality and yield of the amplified V-gene repertoire is of utmost importance. Key parameters affecting the amplification of full antibody repertoires are V-gene specific primer design, complementary DNA (cDNA) synthesis from total RNA extracts of peripheral blood mononuclear cells (PBMCs) and ultimately the polymerase chain reaction (PCR). In this work we analysed all these factors; we performed a detailed bioinformatic analysis of V-gene specific primers based on VBASE2 and evaluated the influence of different commercially available reverse transcriptases on cDNA synthesis and polymerases on PCR efficiency.

View Article and Find Full Text PDF

Protein affinity reagents (PARs), most commonly antibodies, are essential reagents for protein characterization in basic research, biotechnology, and diagnostics as well as the fastest growing class of therapeutics. Large numbers of PARs are available commercially; however, their quality is often uncertain. In addition, currently available PARs cover only a fraction of the human proteome, and their cost is prohibitive for proteome scale applications.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines Iba2, a protein similar to Iba1, focusing on its structure, ability to bind and cross-link actin, and the way it behaves in cells during bacterial invasion.
  • Iba2 has a unique crystal structure characterized by two EF-hand motifs and forms homodimers that are stabilized by disulfide bridges and zinc ions, but it does not bind calcium effectively like Iba1.
  • Both Iba1 and Iba2 show similar F-actin binding and cross-linking activities; however, Iba1 tends to localize more prominently in cellular projections during bacterial infections compared to Iba2.
View Article and Find Full Text PDF

The systematic structural analysis of many target proteins involves generating expression clones in high throughput. This requires robust laboratory procedures and benefits from laboratory automation and data management systems. This chapter gives an overview of the Protein Structure Factory, a structural genomics project focusing on human proteins, and presents the authors' method for cloning bacterial expression clones with the restriction enzymes BamHI and NotI and compatible enzymes.

View Article and Find Full Text PDF

Background: Human Aortic Preferentially Expressed Protein-1 (APEG-1) is a novel specific smooth muscle differentiation marker thought to play a role in the growth and differentiation of arterial smooth muscle cells (SMCs).

Results: Good quality crystals that were suitable for X-ray crystallographic studies were obtained following the truncation of the 14 N-terminal amino acids of APEG-1, a region predicted to be disordered. The truncated protein (termed DeltaAPEG-1) consists of a single immunoglobulin (Ig) like domain which includes an Arg-Gly-Asp (RGD) adhesion recognition motif.

View Article and Find Full Text PDF

Background: The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation.

View Article and Find Full Text PDF

The human protein FLJ36880 belongs to the fumarylacetoacetate hydrolase family. The X-ray structure of FLJ36880 has been determined to 2.2 A resolution employing the semi-automated high-throughput structural genomics approach of the Protein Structure Factory.

View Article and Find Full Text PDF

The solution structure of the human p47 SEP domain in a construct comprising residues G1-S2-p47(171-270) was determined by NMR spectroscopy. A structure-derived hypothesis about the domains' function was formulated and pursued in binding experiments with cysteine proteases. The SEP domain was found to be a reversible competitive inhibitor of cathepsin L with a Ki of 1.

View Article and Find Full Text PDF

We describe here a systematic approach to the identification of human proteins and protein fragments that can be expressed as soluble proteins in Escherichia coli. A cDNA expression library of 10,825 clones was screened by small-scale expression and purification and 2,746 clones were identified. Sequence and protein-expression data were entered into a public database.

View Article and Find Full Text PDF

Background: High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination.

Results: 88 different E.

View Article and Find Full Text PDF

The solution structure of an N-terminally extended construct of the SODD BAG domain was determined by nuclear magnetic resonance spectroscopy. A homology model of the SODD-BAG/HSP70 complex reveals additional possible interactions that are specific for the SODD subfamily of BAG domains while the overall geometry of the complex remains the same. Relaxation rate measurements show that amino acids N358-S375 of SODD which were previously assigned to its BAG domain are not structured in our construct.

View Article and Find Full Text PDF

Structural genomics requires the application of a standardised process for overexpression of soluble proteins that allows high-throughput purification and analysis of protein products. We have developed a highly parallel approach to protein expression, including the simultaneous expression screening of a large number of cDNA clones in an appropriate vector system and the use of a protease-deficient host strain. A set of 221 human genes coding for proteins of various sizes with unknown structures was selected to evaluate the system.

View Article and Find Full Text PDF

Background: Functional Genomics, the systematic characterisation of the functions of an organism's genes, includes the study of the gene products, the proteins. Such studies require methods to express and purify these proteins in a parallel, time and cost effective manner.

Results: We developed a method for parallel expression and purification of recombinant proteins with a hexahistidine tag (His-tag) or glutathione S-transferase (GST)-tag from bacterial expression systems.

View Article and Find Full Text PDF

Background: Functional genomics involves the parallel experimentation with large sets of proteins. This requires management of large sets of open reading frames as a prerequisite of the cloning and recombinant expression of these proteins.

Results: A Java program was developed for retrieval of protein and nucleic acid sequences and annotations from NCBI GenBank, using the XML sequence format.

View Article and Find Full Text PDF