The coordination of lipid messenger signaling with cytoskeletal regulation is central to many organelle-specific regulatory processes. This coupling often depends on the function of multidomain scaffolds that orchestrate transient interactions among multiple signaling intermediates and regulatory proteins on organelles. The number of possible scaffold interaction partners and the ability for these interactions to occur at different timescales makes investigations of scaffold functions challenging.
View Article and Find Full Text PDFIQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A).
View Article and Find Full Text PDFRecent evidence suggests that transcript elongation by RNA polymerase II (RNAPII) is regulated by mechanical cues affecting the entry into, and exit from, transcriptionally inactive states, including pausing and arrest. We present a single-molecule optical-trapping study of the interactions of RNAPII with transcription elongation factors TFIIS and TFIIF, which affect these processes. By monitoring the response of elongation complexes containing RNAPII and combinations of TFIIF and TFIIS to controlled mechanical loads, we find that both transcription factors are independently capable of restoring arrested RNAPII to productive elongation.
View Article and Find Full Text PDFMultiphoton photoelectron emission from individual Au nanorods deposited on indium tin oxide (ITO) substrates is studied via scanning photoionization microscopy, based on femtosecond laser excitation at frequencies near the rod longitudinal surface plasmon resonance (LSPR). The observed resonances in photoemission correlate strongly with plasmon resonances measured in dark field microscopy (DFM), thus establishing a novel scheme for wavelength-resolved study of plasmons in isolated metallic nanoparticles based on highly sensitive electron counting methods. In this work, we explore experimental and theoretical effects of (i) morphology and (ii) aspect ratio (AR) for longitudinal plasmon resonance behavior in Au nanorods.
View Article and Find Full Text PDFElectron emission from individual Au nanorods deposited on indium-tin-oxide (ITO) following excitation with femtosecond laser pulses near the rod longitudinal plasmon resonance is studied via scanning photoionization microscopy. The measured electron signal is observed to strongly depend on the excitation laser polarization and wavelength. Correlated secondary electron microscopy (SEM) and dark-field microscopy (DFM) studies of the same nanorods unambiguously confirm that maximum electron emission results from (i) laser polarization aligned with the rod long axis and (ii) laser wavelength resonant with the localized surface plasmon resonance.
View Article and Find Full Text PDFElongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy.
View Article and Find Full Text PDFThis work investigates plasmon-enhanced multiphoton scanning photoelectron emission microscopy (SPIM) of single gold nanorods under vacuum conditions. Striking differences in their photoemission properties are observed for nanorods deposited either on 2 nm thick Pt films or 10 nm thick indium tin oxide (ITO) films. On a Pt support, the Au nanorods display fourth-order photoionization when excited at 800 nm, a wavelength corresponding to their plasmon resonance in aqueous solution.
View Article and Find Full Text PDF