Publications by authors named "Volker Krey"

Assessment of current and future growth in the global rooftop area is important for understanding and planning for a robust and sustainable decentralised energy system. These estimates are also important for urban planning studies and designing sustainable cities thereby forwarding the ethos of the Sustainable Development Goals 7 (clean energy), 11 (sustainable cities), 13 (climate action) and 15 (life on land). Here, we develop a machine learning framework that trains on big data containing ~700 million open-source building footprints, global land cover, road, and population datasets to generate globally harmonised estimates of growth in rooftop area for five different future growth narratives covered by Shared Socioeconomic Pathways.

View Article and Find Full Text PDF

Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.

View Article and Find Full Text PDF

To understand how global warming can be kept well below 2 degrees Celsius and even 1.5 degrees Celsius, climate policy uses scenarios that describe how society could reduce its greenhouse gas emissions. However, current scenarios have a key weakness: they typically focus on reaching specific climate goals in 2100.

View Article and Find Full Text PDF

This research links the Integrated MARKAL-EFOM system model of China (China TIMES) and the Greenhouse Gas and Air Pollution Interactions and Synergies model (GAINS) to assess the co-benefits of air quality improvement under the Nationally Determined Contribution (NDC) and the well below 2 °C (WBD2) target. Results show that the industry sector and power sector are the key sources necessary to reduce air pollutant emissions, mainly due to the phasing out of fossil fuels. The electrification in the building sector will be another main source by which to decrease PM emissions.

View Article and Find Full Text PDF

Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders' Summit) to phase out fossil fuel subsidies and many national governments are using today's low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices.

View Article and Find Full Text PDF

The UN Paris Agreement puts in place a legally binding mechanism to increase mitigation action over time. Countries put forward pledges called nationally determined contributions (NDC) whose impact is assessed in global stocktaking exercises. Subsequently, actions can then be strengthened in light of the Paris climate objective: limiting global mean temperature increase to well below 2 °C and pursuing efforts to limit it further to 1.

View Article and Find Full Text PDF

Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework.

View Article and Find Full Text PDF

The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated.

View Article and Find Full Text PDF