The synthesis of 1,5,9-cyclododecatriene by selective trimerization of butadiene catalyzed by TiCl and ethylaluminum sesquichloride has been commercially used since 1965. Although thoroughly investigated, not all details of the mechanism are completely understood. The recent development of a new process to produce cyclododecanone involving oxidation of 1,5,9-cyclododecatriene with NO has led to the serendipitous discovery of an array of hitherto unknown byproducts, formed in the trimerization of butadiene: eleven tricyclic CH and one tetracyclic CH hydrocarbons, three of which had never been described before.
View Article and Find Full Text PDFConcise and protecting-group-free total syntheses of the marine oxylipins hybridalactone (1) and three members of the ecklonialactone family (2-4) were developed. They deliver these targets in optically pure form in 14 or 13 steps, respectively, in the longest linear sequence; five of these steps are metal-catalyzed and four others are metal-mediated. The route to either 1 or 2-4 diverges from the common building block 22, which is accessible in 7 steps from 2[5H]furanone by recourse to a rhodium-catalyzed asymmetric 1,4-addition reaction controlled by the carvone-derived diene ligand 35 and a ring-closing alkene metathesis (RCM) catalyzed by the ruthenium indenylidene complex 17 as the key operations.
View Article and Find Full Text PDFA concise and protecting-group-free total synthesis of optically pure ecklonialactones A (1) and B (2) is described. The successful route to these oxylipins isolated from various brown algae involves five transition-metal-catalyzed transformations in the longest linear sequence of 13 steps. The first chiral center was set by a rhodium-catalyzed 1,4-addition of an alkenyl boronate to the commercial butenolide 11, which was controlled by Carreira's carvone-derived diene ligand 21.
View Article and Find Full Text PDFA multitasking C-silylation strategy using the readily available compound 26 as a surrogate for cinnamic acid represents the key design element of a total synthesis of all known members of the ipomoeassin family of resin glyosides. This protecting group maneuver allows the unsaturated acids decorating the glucose subunit of the targets to be attached at an early phase of the synthesis, prevents their participation in the ruthenium-catalyzed ring-closing metathesis (RCM) used to form the macrocyclic ring, and protects them against reduction during the hydrogenation of the resulting cycloalkene over Wilkinson's catalyst. As the C-silyl group can be concomitantly removed with the O-TBS substituent using tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) in acetonitrile, no separate protecting group manipulations were necessary in the final stages, thus contributing to a favorable overall "economy of steps".
View Article and Find Full Text PDFNatronomonas pharaonis is an extremely haloalkaliphilic archaeon that was isolated from salt-saturated lakes of pH 11. We sequenced its 2.6-Mb GC-rich chromosome and two plasmids (131 and 23 kb).
View Article and Find Full Text PDFSWI2/SNF2 ATPases remodel chromatin or other DNA:protein complexes by a poorly understood mechanism that involves ATP-dependent DNA translocation and generation of superhelical torsion. Crystal structures of a dsDNA-translocating SWI2/SNF2 ATPase core from Sulfolobus solfataricus reveal two helical SWI2/SNF2 specific subdomains, fused to a DExx box helicase-related ATPase core. Fully base paired duplex DNA binds along a central cleft via both minor groove strands, indicating that SWI2/SNF2 ATPases travel along the dsDNA minor groove without strand separation.
View Article and Find Full Text PDFThe halophilic archaeon Halobacterium salinarum (strain R1, DSM 671) contains 2784 protein-coding genes as derived from the genome sequence. The cytosolic proteome containing 2042 proteins was separated by two-dimensional gel electrophoresis (2-DE) and systematically analyzed by a semi-automatic procedure. A reference map was established taking into account the narrow isoelectric point (pI) distribution of halophilic proteins between 3.
View Article and Find Full Text PDF