Lithium-sulfur (Li-S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges.
View Article and Find Full Text PDFNowadays, rationally preparing heterostructure materials can not only make up for the shortage of individual components, but also exert unexpected performance through synergistic interactions between the components. Herein, a core-shell of WS@NiCoO screw-like heterostructure arrays grown on carbon cloth (CC) was prepared by a two-step solvothermal method for supercapacitors. As a binder-free flexible electrode, a high areal capacitance of 2449.
View Article and Find Full Text PDFA major challenge in the field of photocatalytic carbon dioxide (CO2) reduction is to design catalyst systems featuring high selectivity for CO production, long-term stability and a composition of Earth-abundant elements. Here, we present a metal-organic framework (MOF) based catalyst to mitigate the technical problems associated with the above-mentioned features. We report a carbon-coated CuNi alloy nanocatalyst obtained by high temperature vacuum treatment of a MOF material (CuNiBTC).
View Article and Find Full Text PDFBenefiting from unique planar structure, high flexibility, splendid thermal, and electric properties; graphene as a crucial component has been widely applied into smart materials and multi-stimulus responsive actuators. Moreover, graphene with easy processing and modification features can be decorated with various functional groups through covalent or non-covalent bonds, which is promising in the conversion of environmental energy from single and/or multi-stimuli, to mechanical energy. In this review, we present the actuating behaviors of graphene, regulated by chemical bonds or intermolecular forces under multi-stimuli and summarize the recent advances on account of the unique nanostructures in various actuation circumstances such as thermal, humidity, electrochemical, electro-/photo-thermal, and other stimuli.
View Article and Find Full Text PDFBatteries based on divalent metals, such as the Zn/Zn pair, represent attractive alternatives to lithium-ion chemistry due to their high safety, reliability, earth-abundance, and energy density. However, archetypal Zn batteries are bulky, inflexible, non-rechargeable, and contain a corrosive electrolyte. Suppression of the anodic growth of Zn dendrites is essential for resolution of these problems and requires materials with nanoscale mechanics sufficient to withstand mechanical deformation from stiff Zn dendrites.
View Article and Find Full Text PDF