Publications by authors named "Volgin A"

Inducing multiple neurobehavioural and neurochemical deficits, olfactory bulbectomy (OBX) has been developed as a rodent model of depression with potential for antidepressant drug screening. However, the generality of this model in other vertebrate taxa remains poorly understood. A small freshwater teleost fish, the zebrafish (Danio rerio), is rapidly becoming a common model species in neuroscience research.

View Article and Find Full Text PDF

Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa.

View Article and Find Full Text PDF

Depression is a widespread and severely debilitating neuropsychiatric disorder whose key clinical symptoms include low mood, anhedonia and despair (the inability or unwillingness to overcome stressors). Experimental animal models are widely used to improve our mechanistic understanding of depression pathogenesis, and to develop novel antidepressant therapies. In rodents, various experimental models of 'behavioral despair' have already been developed and rigorously validated.

View Article and Find Full Text PDF

Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Stress is a key factor in neuropsychiatric disorders, and zebrafish are emerging as a significant model organism for studying stress-related mechanisms due to their sensitive behavioral and physiological responses.
  • The review discusses the strengths and weaknesses of using zebrafish models in stress research, highlighting their potential for discovering new treatments.
  • Unlike traditional mammalian models, zebrafish offer advantages like advanced gene-editing techniques and efficient drug screening, making them valuable for understanding stress resilience and developing innovative therapies.
View Article and Find Full Text PDF

Multiple species display robust behavioral variance among individuals due to different genetic, genomic, epigenetic, neuroplasticity and environmental factors. Behavioral individuality has been extensively studied in various animal models, including rodents and other mammals. Fish, such as zebrafish (Danio rerio), have recently emerged as powerful aquatic model organisms with overt individual differences in behavioral, nociceptive and other CNS traits.

View Article and Find Full Text PDF

Kava (kava kava, ) is a common drug-containing plant in the Pacific islands. Kavalactones, its psychoactive compounds, exert potent central nervous system (CNS) action clinically and in animal models. However, the exact pharmacological profiles and mechanisms of action of kava on the brain and behavior remain poorly understood.

View Article and Find Full Text PDF

Due to its fully sequenced genome, high genetic homology to humans, external fertilization, fast development, transparency of embryos, low cost and active reproduction, the zebrafish has become a novel promising model organism in biomedicine. Zebrafish are a useful tool in genetic and neuroscience research, including linking various genetic mutations to brain mechanisms using forward and reverse genetics. These approaches have produced novel models of rare genetic CNS disorders and common brain illnesses, such as addiction, aggression, anxiety and depression.

View Article and Find Full Text PDF

Schizophrenia is a severely debilitating, lifelong psychiatric disorder affecting approximately 1% of global population. The pathobiology of schizophrenia remains poorly understood, necessitating further translational research in this field. Experimental (animal) models are becoming indispensable for studying schizophrenia-related phenotypes and pro/antipsychotic drugs.

View Article and Find Full Text PDF

Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally.

View Article and Find Full Text PDF

Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology.

View Article and Find Full Text PDF

Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation).

View Article and Find Full Text PDF

Melatonin is an important hormone regulating circadian rhythm, neuroprotection and neuroimmune processes. However, its exact physiological roles in brain mechanisms remain poorly understood. Here, we summarize the mounting evidence implicating melatonin in brain disorders and behavior, based on clinical and experimental studies in-vivo.

View Article and Find Full Text PDF

Anticholinergic drugs based on tropane alkaloids, including atropine, scopolamine, and hyoscyamine, have been used for various medicinal and toxic purposes for millennia. These drugs are competitive antagonists of acetylcholine muscarinic (M-) receptors that potently modulate the central nervous system (CNS). Currently used clinically to treat vomiting, nausea, and bradycardia, as well as alongside other anesthetics to avoid vagal inhibition, these drugs also evoke potent psychotropic effects, including characteristic delirium-like states with hallucinations, altered mood, and cognitive deficits.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood.

View Article and Find Full Text PDF

Aggression is a common agonistic behavior affecting social life and well-being of humans and animals. However, the underlying mechanisms of aggression remain poorly understood. For decades, studies of aggression have mostly focused on laboratory rodents.

View Article and Find Full Text PDF

Atropine and scopolamine are classical muscarinic cholinergic antagonists that exert multiple CNS effects. Belonging to a group of deliriant hallucinogens, these drugs induce delirium-like hallucinations, hyperactivity, altered affective states and amnesia. However, as deliriants remain the least studied group of hallucinogens, their complex and poorly understood profiles necessitate further clinical and preclinical studies.

View Article and Find Full Text PDF

Currently becoming widely recognized, personalized psychiatry focuses on unique physiological and genetic profiles of patients to best tailor their therapy. However, the role of individual differences, as well as genetic and environmental factors, in human psychiatric disorders remains poorly understood. Animal experimental models are a valuable tool to improve our understanding of disease pathophysiology and its molecular mechanisms.

View Article and Find Full Text PDF

Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants".

View Article and Find Full Text PDF

Environmental stimuli are critical in preclinical research that utilizes laboratory animals to model human brain disorders. The main goal of environmental enrichment (EE) is to provide laboratory animals with better choice of activity and greater control over social and spatial stressors. Thus, in addition to being a useful experimental tool, EE becomes an important strategy for increasing the validity and reproducibility of preclinical data.

View Article and Find Full Text PDF

Antidepressant drugs are currently one of the most prescribed medications. In addition to treatment resistance and side effects of antidepressants, their clinical use is further complicated by antidepressant discontinuation syndrome (ADS). ADS is a common problem in patients following the interruption, dose reduction, or discontinuation of antidepressant drugs.

View Article and Find Full Text PDF

The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry.

View Article and Find Full Text PDF

Purpose: To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models.

Experimental Design: Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors.

View Article and Find Full Text PDF

We synthesized two series of imatinib mesylate (STI-571) analogs to develop a Bcr-Abl and c-KIT receptor-specific labeling agent for positron emission tomography (PET) imaging to measure Bcr-Abl and c-KIT expression levels in a mouse model. The methods of molecular modeling, synthesis of STI-571 and its analogs, in vitro kinase assays, and radiolabeling are described. Molecular modeling revealed that these analogs bind the same Bcr-Abl and c-KIT binding sites as those bound by STI-571.

View Article and Find Full Text PDF