The field of biosensing would significantly benefit from a disruptive technology enabling flexible manufacturing of uniform electrodes. Inkjet printing holds promise for this, although realizing full electrode manufacturing with this technology remains challenging. We introduce a nitrogen-doped carboxylated graphene ink (NGA-ink) compatible with commercially available printing technologies.
View Article and Find Full Text PDFOwing to their low cost, good performance, and high lifetime stability, activated carbons (ACs) with a large surface area rank among the most popular materials deployed in commercially available electrochemical double-layer (EDLC) capacitors. Here, we report a simple two-step synthetic procedure for the preparation of activated carbon from natural flax. Such ACs possess a very high specific surface area (1649 m g) accompanied by a microporous structure with the size of pores below 2 nm.
View Article and Find Full Text PDFEco-friendly, electrochemically active electrode materials based on covalent graphene derivatives offer enormous potential for energy storage applications. However, covalent grafting of functional groups onto the graphene surface is challenging due to its low reactivity. Here, fluorographene chemistry was employed to graft an arginine moiety via its guanidine group homogeneously on both sides of graphene.
View Article and Find Full Text PDFA metal-organic gel (MOG) similar in constitution to MIL-100 (Fe) but containing a lower connectivity ligand (5-aminoisophthalate) was integrated with an isophthalate functionalized graphene (IG). The IG acted as a structure-directing templating agent, which also induced conductivity of the material. The MOG@IG was pyrolyzed at 600°C to obtain MGH-600, a hybrid of Fe/FeC/FeO enveloped by graphene.
View Article and Find Full Text PDFBiodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO.
View Article and Find Full Text PDFThere is an urgent need for a simple and up-scalable method for the preparation of supercapacitor electrode materials due to increasing global energy consumption worldwide. We have discovered that fluorographene exhibits great potential for the development of new kinds of supercapacitors aimed at practical applications. We have shown that time control of isothermal reduction of fluorographite at 450 °C under a hydrogen atmosphere led to the fine-tuning of fluorine content and electronic properties of the resulting fluorographene derivatives.
View Article and Find Full Text PDFOwing to its high surface area and excellent conductivity, graphene is considered an efficient electrode material for supercapacitors. However, its restacking in electrolytes hampers its broader utilization in this field. Covalent graphene functionalization is a promising strategy for providing more efficient electrode materials.
View Article and Find Full Text PDFThe high specific surface area of multilayered two-dimensional carbides called MXenes, is a critical feature for their use in energy storage systems, especially supercapacitors. Therefore, the possibility of controlling this parameter is highly desired. This work presents the results of the influence of oxygen concentration during Ti₃AlC₂ ternary carbide-MAX phase preparation on α-Al₂O₃ particles content, and thus the porosity and specific surface area of the Ti₃C₂T MXenes.
View Article and Find Full Text PDF