testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418).
View Article and Find Full Text PDFIn this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy.
View Article and Find Full Text PDFTwo novel ignition-resistant magnesium alloys, Mg-2Gd-2Y-1Ca and Mg-2Nd-1Y-1Ca, were prepared in the ultrafine-grain condition by equal channel angular pressing (ECAP). In addition, four commercial alloys-AZ31, AX41, AE42 and WE43-were prepared similarly as a reference. The microstructure, mechanical properties and ignition temperature were thoroughly investigated.
View Article and Find Full Text PDFZinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size.
View Article and Find Full Text PDFZinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder.
View Article and Find Full Text PDFThe present work describes the influence of different temperatures on mechanical properties and microstructure of additively manufactured high-strength 1.2709 maraging steel. For this purpose, samples produced by selective laser melting technology were used in their as-printed as well as their heat-treated state.
View Article and Find Full Text PDFAs the commercially most-used Ti-6Al-4V alloy has a different modulus of elasticity compared to the modulus of elasticity of bone and contains allergenic elements, β-Ti alloy could be a suitable substitution in orthopedics. The spark plasma sintering (SPS) method is feasible for the preparation of materials, with very low porosity and fine-grained structure, leading to higher mechanical properties. In this study, we prepared quaternary Ti-25Nb-4Ta-8Sn alloy using the spark plasma sintering method.
View Article and Find Full Text PDFThe main aim of this study was to determine the susceptibility of the additively manufactured high strength X3NiCoMoTi 18-9-5 maraging steel to hydrogen embrittlement. For this purpose, samples produced by selective laser melting technology, before and after heat treatment, were used. The examined samples were electrochemically charged with hydrogen in NaCl + NHSCN solution at a current density of 50 mA/cm for 24 h.
View Article and Find Full Text PDFIn vitro cytotoxicity testing is an indispensable part of the development of new biomaterials. However, the standard ISO 10993-5 enables variability in the testing conditions, which makes the results of the test incomparable. We studied the influence of media composition on the results of the cytotoxicity test.
View Article and Find Full Text PDFThe chemical and phase composition of the coating and the coating/substrate interface of an Al-Si-coated 22MnB5 hot stamped steel was investigated by means of SEM-EDS, XRD, micro-XRD and electron diffraction. Moreover, the surface profile was analyzed by XPS and roughness measurements. The XPS measurements showed that the thickness of the Si and Al oxide layers increased from 14 to 76 nm after die-quenching, and that the surface roughness increased as well as a result of volume changes caused by phase transformations.
View Article and Find Full Text PDFThis paper describes the effect of silicon on the manufacturing process, structure, phase composition, and selected properties of titanium aluminide alloys. The experimental generation of TiAl-Si alloys is composed of titanium aluminide (TiAl, TiAl or TiAl) matrix reinforced by hard and heat-resistant titanium silicides (especially TiSi). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials.
View Article and Find Full Text PDFThe Zn-based alloys, alloyed with the elements of the 2nd group of the periodic table, are considered as potential biodegradable materials suitable for the fabrication of small orthopaedic implants or cardiovascular stents. Unfortunately, the as-cast Zn-based alloys do not fulfil the requirements for mechanical properties for such applications. Extrusion is a thermomechanical process which is very powerful for breaking the cast microstructure and enhancing mechanical characteristics of metallic materials.
View Article and Find Full Text PDFThe Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure and properties of the bulk materials.
View Article and Find Full Text PDFZinc and its alloys belong to a group of biodegradable materials, which can be potentially used for the preparation of temporary orthopedic implants. The research of biodegradable zinc materials revealed a lot of limitations; however, the new processing approaches of those materials can enhance their properties, which are insufficient for now. In this study, the zinc composite with 8 wt.
View Article and Find Full Text PDFSevere plastic deformation represented by three passes in Conform SPD and subsequent rotary swaging was applied on Ti grade 4. This process caused extreme strengthening of material, accompanied by reduction of ductility. Mechanical properties of such material were then tuned by a suitable heat treatment.
View Article and Find Full Text PDFMaraging steels are generally characterized by excellent mechanical properties, which make them ideal for various industrial applications. The application field can be further extended by using selective laser melting (SLM) for additive manufacturing of shape complicated products. However, the final mechanical properties are strongly related to the microstructure conditions.
View Article and Find Full Text PDFZinc-based alloys represent one of the most highly developed areas regarding biodegradable materials. Despite this, some general deficiencies such as cytotoxicity and poor mechanical properties (especially elongation), are not properly solved. In this work, a Zn-5Mg (5 wt.
View Article and Find Full Text PDFBiodegradable materials are of interest for temporary medical implants like stents for restoring damaged blood vessels, plates, screws, nails for fixing fractured bones. In the present paper new biodegradable Zn-2Mg alloy prepared by conventional casting and hot extrusion was tested in in vitro and in vivo conditions. Structure characterization and mechanical properties in tension and compression have been evaluated.
View Article and Find Full Text PDFFor the first time, the comprehensive characterization of the additively manufactured AlSi₉Cu₃Fe alloy is reported in this paper. Conventionally, the AlSi₉Cu₃(Fe) alloy is prepared by high-pressure die casting (HPDC), but this technology largely does not offer such opportunities as additive manufacturing (AM) does, especially in the design of new lightweight parts. In the present paper, testing samples were prepared by selective laser melting (SLM), one of the AM technologies, and characterized in terms of their microstructure (by means of light microscopy, scanning electron microscopy and transmission electron microscopy in combination with analytical techniques for evaluation of chemical and phase composition) and mechanical properties (static tension, compression, and hardness).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2018
3D printing seems to be the technology of the future for the preparation of metallic implants. For such applications, corrosion behaviour is pivotal. However, little is published on this topic and with inconsistent results.
View Article and Find Full Text PDFThis work aims to describe the formation of intermetallics in the Ni-Ti-Al system in dependence on the heating rate, which has been determined previously as the crucial factor of thermal explosion self-propagating synthesis (TE-SHS). The tested alloys contained 1⁻7 wt % aluminum. Thermal analysis has been realized by the optical pyrometer under the conditions of high heating rates up to 110 °C·min.
View Article and Find Full Text PDFAdditive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading.
View Article and Find Full Text PDFSelf-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g.
View Article and Find Full Text PDFIntroduction A standard osteosynthetic material for maxillofacial skeleton is titanium and its alloys. The convenience of degradable material is avoiding of second surgery in cases, where removal of the material is necessary. Magnesium biodegradable alloys have similar mechanic properties as cortical bone - reasonable corrosion and sufficient biologic properties.
View Article and Find Full Text PDF