J Clin Endocrinol Metab
December 2024
Context: Pathogenic variants in the TBCE gene, encoding tubulin-specific chaperone E crucial for tubulin folding, are linked to three severe neurodevelopmental disorders: Hypoparathyroidism-retardation-dysmorphism (HRD) syndrome, Kenny-Caffey syndrome type 1, and progressive encephalopathy with amyotrophy and optic atrophy.
Objective: We identified patients with a novel, milder TBCE-associated phenotype and aimed to characterize it at the clinical and molecular levels.
Materials And Methods: We conducted splicing analysis using deep NGS sequencing of RT-PCR products and detected TBCE through Western blotting.
Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating.
View Article and Find Full Text PDFWorld J Stem Cells
September 2024
Purpose: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.
Methods: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals.
Aim: The current study aimed to infer neurophysiological mechanisms of auditory processing in children with Rett syndrome (RTT)-rare neurodevelopmental disorders caused by MECP2 mutations. We examined two brain responses elicited by 40-Hz click trains: auditory steady-state response (ASSR), which reflects fine temporal analysis of auditory input, and sustained wave (SW), which is associated with integral processing of the auditory signal.
Methods: We recorded electroencephalogram findings in 43 patients with RTT (aged 2.
Peripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations.
View Article and Find Full Text PDFThe ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of and under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy.
View Article and Find Full Text PDFCohen syndrome is an autosomal recessive disorder caused by () gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation.
View Article and Find Full Text PDFBackground: Rett syndrome (RS) is a rare neurodevelopmental disorder characterized by mutations in the MECP2 gene. Patients with RS have severe motor abnormalities and are often unable to walk, use hands and speak. The preservation of perceptual and cognitive functions is hard to assess, while clinicians and care-givers point out that these patients need more time to process information than typically developing peers.
View Article and Find Full Text PDFThe development of biopolymer scaffolds for intestine regeneration is one of the most actively developing areas in tissue engineering. However, intestinal regenerative processes after scaffold implantation depend on the activity of the intestinal microbial community that is in close symbiosis with intestinal epithelial cells. In this work, we study the impact of different scaffolds based on biocompatible poly(3-hydroxybutyrate) (PHB) and alginate (ALG) as well as PHB/ALG scaffolds seeded with probiotic bacteria on the composition of gut microbiota of Wistar rats.
View Article and Find Full Text PDFSpontaneous EEG contains important information about neuronal network properties that is valuable for understanding different neurological and psychiatric conditions. Rett syndrome (RTT) is a rare neurodevelopmental disorder, caused by mutation in the MECP2 gene. RTT is characterized by severe motor impairments that prevent adequate assessment of cognitive functions.
View Article and Find Full Text PDFScaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique.
View Article and Find Full Text PDFRett syndrome (RTT), a severe neurodevelopmental disorder caused by MECP2 gene abnormalities, is characterized by atypical EEG activity, and its detailed examination is lacking. We combined the comparison of one-time eyes open EEG resting state activity from 32 girls with RTT and their 41 typically developing peers (age 2-16 years old) with longitudinal following of one girl with RTT to reveal EEG parameters which correspond to the RTT progression. Traditional measures, such as epileptiform abnormalities, generalized background activity, beta activity and the sensorimotor rhythm, were supplemented by a new frequency rate index measured as the ratio between high- and low-frequency power of sensorimotor rhythm.
View Article and Find Full Text PDF(1) Hypophosphatasia (HPP) is a rare inherited disease caused by mutations (pathogenic variants) in the ALPL gene which encodes tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by impaired bone mineral metabolism due to the low enzymatic activity of TNSALP. Knowledge about the structure of the gene and the features and functions of various ALPL gene variants, taking into account population specificity, gives an understanding of the hereditary nature of the disease, and contributes to the diagnosis, prevention, and treatment of the disease.
View Article and Find Full Text PDFMagnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (FeO) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA).
View Article and Find Full Text PDFIntellectual development disorder (IDD) is characterized by a general deficit in intellectual and adaptive functioning. In recent years, there has been a growing interest in studying the genetic structure of IDD. Of particular difficulty are patients with non-specific IDD, for whom it is impossible to establish a clinical diagnosis without complex genetic diagnostics.
View Article and Find Full Text PDFPolymers (Basel)
June 2022
Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHB--HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films-water-assisted self-assembly ("breath figure") and spin-coating techniques.
View Article and Find Full Text PDFThe use of bioengineering methods and approaches is extremely promising for the development of experimental models of cancer, especially head and neck squamous cell carcinomas (HNSCC) that are characterized by early metastasis and rapid progression., for testing novel anticancer drugs and diagnostics. This review summarizes the most relevant HNSCC tumor models used to this day as well as future directions for improved modeling of the malignant disease.
View Article and Find Full Text PDFPathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available.
View Article and Find Full Text PDFThis study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate.
View Article and Find Full Text PDFBiodegradable and biocompatible polymers are actively used in tissue engineering to manufacture scaffolds. Biomedical properties of polymer scaffolds depend on the physical and chemical characteristics and biodegradation kinetics of the polymer material, 3D microstructure and topography of the scaffold surface, as well as availability of minerals, medicinal agents, and growth factors loaded into the scaffold. However, in addition to the above, the intrinsic biological activity of the polymer and its biodegradation products can also become evident.
View Article and Find Full Text PDFTechnology has become an integral part of everyday lives. Recent years have witnessed advancement in technology with a wide range of applications in healthcare. However, the use of the Internet of Things (IoT) and robotics are yet to see substantial growth in terms of its acceptability in healthcare applications.
View Article and Find Full Text PDFWe studied the effect of porous composite scaffolds based on poly(3-hydroxybutyrate) (PHB) loaded with simvastatin on the growth and differentiation of mesenchymal stem cells. The scaffolds have a suitable microstructure (porosity and pore size) and physicochemical properties to support the growth of mesenchymal stem cells. Scaffold loading with simvastatin suppressed cell growth and increased alkaline phosphatase activity, which can attest to their osteoinductive properties.
View Article and Find Full Text PDFBackground: The Hi-C technique is widely employed to study the 3-dimensional chromatin architecture and to assemble genomes. The conventional in situ Hi-C protocol employs restriction enzymes to digest chromatin, which results in nonuniform genomic coverage. Using sequence-agnostic restriction enzymes, such as DNAse I, could help to overcome this limitation.
View Article and Find Full Text PDF