Publications by authors named "Vogel Z"

The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice.

View Article and Find Full Text PDF

The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as osteogenic growth peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts.

View Article and Find Full Text PDF

Objective: To assess dentin collagen denaturation from phosphoric acid and enzyme treatments using collagen hybridizing peptide (CHP) and to investigate the effect of collagen denaturation on bio-stabilization promoted by proanthocyanidins (PA).

Methods: Human molars were sectioned into 7-µm-thick dentin films, demineralized, and assigned to six groups: control with/without PA modification, HPO-treated collagen with/without PA modification, enzyme-treated collagen with/without PA modification. PA modification involved immersing collagen films in 0.

View Article and Find Full Text PDF

Cannabidiol (CBD), a non-psychotropic cannabinoid, demonstrates antipsychotic-like and procognitive activities in humans and in animal models of schizophrenia. The mechanisms of these beneficial effects of CBD are unknown. Here, we examined behavioral effects of CBD in a pharmacological model of schizophrenia-like cognitive deficits induced by repeated ketamine (KET) administration.

View Article and Find Full Text PDF

Mammalian microRNAs (miRNAs) play a critical role in modulating the response of immune cells to stimuli. Cannabinoids are known to exert beneficial actions such as neuroprotection and immunosuppressive activities. However, the underlying mechanisms which contribute to these effects are not fully understood.

View Article and Find Full Text PDF

The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes.

View Article and Find Full Text PDF

Background: Our previous studies showed that the non-psychoactive cannabinoid, cannabidiol (CBD), ameliorates the clinical symptoms in mouse myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis model of multiple sclerosis (MS) as well as decreases the memory MOG35-55-specific T cell (TMOG) proliferation and cytokine secretion including IL-17, a key autoimmune factor. The mechanisms of these activities are currently poorly understood.

Methods: Herein, using microarray-based gene expression profiling, we describe gene networks and intracellular pathways involved in CBD-induced suppression of these activated memory TMOG cells.

View Article and Find Full Text PDF

Background: Dimethylheptyl-cannabidiol (DMH-CBD), a non-psychoactive, synthetic derivative of the phytocannabinoid cannabidiol (CBD), has been reported to be anti-inflammatory in RAW macrophages. Here, we evaluated the effects of DMH-CBD at the transcriptional level in BV-2 microglial cells as well as on the proliferation of encephalitogenic T cells.

Methods: BV-2 cells were pretreated with DMH-CBD, followed by stimulation with the endotoxin lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Cannabidiol (CBD), the non-psychoactive cannabinoid, has been previously shown by us to decrease peripheral inflammation and neuroinflammation in mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here we have studied the anti-inflammatory effects of newly synthesized derivatives of natural (-)-CBD ((-)-8,9-dihydro-7-hydroxy-CBD; HU-446) and of synthetic (+)-CBD ((+)-8,9-dihydro-7-hydroxy-CBD; HU-465) on activated myelin oligodendrocyte glycoprotein (MOG)35-55-specific mouse encephalitogenic T cells (T(MOG) ) driving EAE/MS-like pathologies. Binding assays followed by molecular modeling revealed that HU-446 has negligible affinity toward the cannabinoid CB1 and CB2 receptors while HU-465 binds to both CB1 and CB2 receptors at the high nanomolar concentrations (Ki = 76.

View Article and Find Full Text PDF

Background: Cannabidiol (CBD), the main non-psychoactive cannabinoid, has been previously shown by us to ameliorate clinical symptoms and to decrease inflammation in myelin oligodendrocyte glycoprotein (MOG)35-55-induced mouse experimental autoimmune encephalomyelitis model of multiple sclerosis as well as to decrease MOG35-55-induced T cell proliferation and IL-17 secretion. However, the mechanisms of CBD anti-inflammatory activities are unclear.

Methods: Here we analyzed the effects of CBD on splenocytes (source of accessory T cells and antigen presenting cells (APC)) co-cultured with MOG35-55-specific T cells (TMOG) and stimulated with MOG35-55.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells.

View Article and Find Full Text PDF

Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis. We found that reactivation by MOG35-55 of MOG35-55-specific encephalitogenic T cells (cells that induce Experimental Autoimmune Encephalitis when injected to mice) in the presence of spleen derived antigen presenting cells led to a large increase in IL-17 production and secretion.

View Article and Find Full Text PDF

Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how Δ(9)-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response.

View Article and Find Full Text PDF

Cannabidiol (CBD) has been shown to exhibit anti-inflammatory, antioxidant and neuroprotective properties. Unlike Δ(9)-tetrahydrocannabinol (THC), CBD is devoid of psychotropic effects and has very low affinity for both cannabinoid receptors, CB(1) and CB(2). We have previously reported that CBD and THC have different effects on anti-inflammatory pathways in lipopolysaccharide-stimulated BV-2 microglial cells, in a CB(1)/CB(2) independent manner.

View Article and Find Full Text PDF

Background And Purpose: Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. However, the underlying mechanisms are largely unknown.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling.

View Article and Find Full Text PDF

Background And Purpose: N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line.

View Article and Find Full Text PDF

Background And Purpose: Cannabis extracts and several cannabinoids have been shown to exert broad anti-inflammatory activities in experimental models of inflammatory CNS degenerative diseases. Clinical use of many cannabinoids is limited by their psychotropic effects. However, phytocannabinoids like cannabidiol (CBD), devoid of psychoactive activity, are, potentially, safe and effective alternatives for alleviating neuroinflammation and neurodegeneration.

View Article and Find Full Text PDF

Whisking is controlled by multiple, possibly functionally segregated, motor sensory-motor loops. While testing for effects of endocannabinoids on whisking, we uncovered the first known functional segregation of channels controlling whisking amplitude and timing. Channels controlling amplitude, but not timing, were modulated by cannabinoid receptor type 1 (CB1R).

View Article and Find Full Text PDF

Background: Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood.

View Article and Find Full Text PDF

Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation.

View Article and Find Full Text PDF

We examined how lipopolysaccharide (LPS) and interferon gamma (IFN-gamma), known to differentially activate microglia, affect the expression of G protein-coupled receptor 55 (GPR55), a novel cannabinoid receptor. We found that GPR55 mRNA is significantly expressed in both primary mouse microglia and the BV-2 mouse microglial cell line, and that LPS down-regulates this message. Conversely, IFN-gamma slightly decreases GPR55 mRNA in primary microglia, while it upregulates this message in BV-2 cells.

View Article and Find Full Text PDF

The notion of functional interactions between the alpha7 nicotinic acetylcholine (alpha7 nACh) and the cannabinoid systems is emerging from recent in vitro and in vivo studies. Both the alpha7 nACh receptor and the cannabinoid receptor 1 (CB1) are highly expressed in the hippocampus. To begin addressing possible anatomical interactions between the alpha7 nACh and the cannabinoid systems in the rat hippocampus, we investigated the distribution of neurons expressing alpha7 nACh mRNA in relation to those containing CB1 mRNA.

View Article and Find Full Text PDF

Anandamide (AEA) is a lipid molecule belonging to the family of endocannabinoids. Various studies report neuroprotective activity of AEA against toxic insults, such as ischemic conditions and excitotoxicity, whereas some show that AEA has pro-apoptotic effects. Here we have shown that AEA confers a protective activity in N18TG2 murine neuroblastoma cells subjected to low serum-induced apoptosis.

View Article and Find Full Text PDF

Chronic exposure to opiate agonists (followed by agonist withdrawal) leads to a large increase in the activity of adenylyl cyclase (AC) isozymes I, V, VI, and VIII, a phenomenon defined as AC superactivation (or supersensitization). On the other hand, AC isozymes belonging to the AC-II family (AC-II, AC-IV, and AC-VII) show decreased activity, referred to as superinhibition. Using COS-7 cells transiently transfected with mu-opioid receptor and AC-II, we show here that inhibition of PKC and tyrosine kinase activities synergistically reduced the level of AC-II superinhibition.

View Article and Find Full Text PDF