Publications by authors named "Voet P"

Background And Purpose: Application of different deformable dose accumulation (DDA) solutions makes institutional comparisons after online-adaptive magnetic resonance-guided radiotherapy (OA-MRgRT) challenging. The aim of this multi-institutional study was to analyze accuracy and agreement of DDA-implementations in OA-MRgRT.

Material And Methods: One gold standard (GS) case deformed with a biomechanical-model and five clinical cases consisting of prostate (2x), cervix, liver, and lymph node cancer, treated with OA-MRgRT, were analyzed.

View Article and Find Full Text PDF

Background: This study aimed to evaluate an a-priori multicriteria plan optimization algorithm (mCycle) for locally advanced breast cancer radiation therapy (RT) by comparing automatically generated VMAT (Volumetric Modulated Arc Therapy) plans (AP-VMAT) with manual clinical Helical Tomotherapy (HT) plans.

Methods: The study included 25 patients who received postoperative RT using HT. The patient cohort had diverse target selections, including both left and right breast/chest wall (CW) and III-IV node, with or without internal mammary node (IMN) and Simultaneous Integrated Boost (SIB).

View Article and Find Full Text PDF

Background: To investigate the capability of a not-yet commercially available fully automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), to further improve the plan quality of an already-validated Wish List (WL) pushing on the organs-at-risk (OAR) sparing without compromising target coverage and plan delivery accuracy.

Material And Methods: Twenty-four mono-institutional consecutive cervical cancer Volumetric-Modulated Arc Therapy (VMAT) plans delivered between November 2019 and April 2022 (50 Gy/25 fractions) have been retrospectively selected. In mCycle the LO planning algorithm was combined with the a-priori multi-criterial optimization (MCO).

View Article and Find Full Text PDF

. To develop and evaluate a deep learning based fast volumetric modulated arc therapy (VMAT) plan generation method for prostate radiotherapy..

View Article and Find Full Text PDF

Purpose: Adaptive stereotactic body radiation therapy (SBRT) for prostate cancer (PC) by the 1.5 T MR-linac currently requires online planning by an expert user. A fully automated and user-independent solution to adaptive planning (mCycle) of PC-SBRT was compared with user's plans for the 1.

View Article and Find Full Text PDF

Purpose: Automated planning techniques aim to reduce manual planning time and inter-operator variability without compromising the plan quality which is particularly challenging for head-and-neck (HN) cancer radiotherapy. The objective of this study was to evaluate the performance of an a priori-multicriteria plan optimization algorithm on a cohort of HN patients.

Methods: A total of 14 nasopharyngeal carcinoma (upper-HN) and 14 "middle-lower indications" (lower-HN) previously treated in our institution were enrolled in this study.

View Article and Find Full Text PDF

Purpose: For the 1.5 T Elekta MR-Linac it is essential that the optimisation of a treatment plan accounts for the electron return effect on the planned dose distribution. The ability of two algorithms for the first stage fluence optimisation, pencil beam (PB) and Monte Carlo (MC), to produce acceptable plan quality was investigated.

View Article and Find Full Text PDF

Background And Purpose: Reported plan quality improvements with autoplanning of radiotherapy of the prostate and seminal vesicles are poor. A system for automated multi-criterial planning has been validated for this treatment in a large international multi-center study. The system is configured with training plans using a mechanism that strives for quality improvements relative to those plans.

View Article and Find Full Text PDF

Background: Planning for Volumetric Modulated Arc Therapy (VMAT) may be time consuming and its use is limited by available staff resources. Automated multicriterial treatment planning can eliminate this bottleneck. We compared automatically created (auto) VMAT plans generated by Erasmus-iCycle to manually created VMAT plans for treatment of spinal metastases.

View Article and Find Full Text PDF

Purpose: To develop and validate fully automated generation of VMAT plan-libraries for plan-of-the-day adaptive radiotherapy in locally-advanced cervical cancer.

Material And Methods: Our framework for fully automated treatment plan generation (Erasmus-iCycle) was adapted to create dual-arc VMAT treatment plan libraries for cervical cancer patients. For each of 34 patients, automatically generated VMAT plans (autoVMAT) were compared to manually generated, clinically delivered 9-beam IMRT plans (CLINICAL), and to dual-arc VMAT plans generated manually by an expert planner (manVMAT).

View Article and Find Full Text PDF

Background And Purpose: In a published study on cervical cancer, 5-beam IMRT was inferior to single arc VMAT. Here we compare 9, 12, and 20 beam IMRT with single and dual arc VMAT.

Material And Methods: For each of 10 patients, automated plan generation with the in-house Erasmus-iCycle optimizer was used to assist an expert planner in generating the five plans with the clinical TPS.

View Article and Find Full Text PDF

Purpose: To develop and evaluate fully automated volumetric modulated arc therapy (VMAT) treatment planning for prostate cancer patients, avoiding manual trial-and-error tweaking of plan parameters by dosimetrists.

Methods And Materials: A system was developed for fully automated generation of VMAT plans with our commercial clinical treatment planning system (TPS), linked to the in-house developed Erasmus-iCycle multicriterial optimizer for preoptimization. For 30 randomly selected patients, automatically generated VMAT plans (VMATauto) were compared with VMAT plans generated manually by 1 expert dosimetrist in the absence of time pressure (VMATman).

View Article and Find Full Text PDF

Purpose: To dosimetrically evaluate a margin-of-the-day (MoD) online adaptive intensity-modulated radiotherapy (IMRT) strategy for cervical cancer patients. The strategy is based on a single planning computed tomography (CT) scan and a pretreatment constructed IMRT plan library with incremental clinical target volumes (CTV)-to-planning target volumes (PTV) margins.

Material And Methods: For 14 patients, 9-10 variable bladder filling CT scans acquired at pretreatment and after 40 Gy were available.

View Article and Find Full Text PDF

Purpose: To compare IMRT planning strategies for prostate cancer patients with metal hip prostheses.

Methods: All plans were generated fully automatically (i.e.

View Article and Find Full Text PDF

Purpose: To quantify improved salivary gland sparing for head and neck cancer patients using intensity-modulated radiotherapy (IMRT) plans based on integrated computerized optimization of beam orientations and intensity profiles. To assess if optimized nonzero couch angles also improve VMAT plans.

Methods: Our in-house developed algorithm iCycle was used for automated generation of multicriterial optimized plans with optimized beam orientations and intensity profiles, and plans with optimized profiles for preselected beam arrangements.

View Article and Find Full Text PDF

In a recent paper, we have published a new algorithm, designated 'iCycle', for fully automated multi-criterial optimization of beam angles and intensity profiles. In this study, we have used this algorithm to investigate the relationship between plan quality and the extent of the beam direction search space, i.e.

View Article and Find Full Text PDF

Purpose: To prospectively compare plans generated with iCycle, an in-house-developed algorithm for fully automated multicriterial intensity modulated radiation therapy (IMRT) beam profile and beam orientation optimization, with plans manually generated by dosimetrists using the clinical treatment planning system.

Methods And Materials: For 20 randomly selected head-and-neck cancer patients with various tumor locations (of whom 13 received sequential boost treatments), we offered the treating physician the choice between an automatically generated iCycle plan and a manually optimized plan using standard clinical procedures. Although iCycle used a fixed "wish list" with hard constraints and prioritized objectives, the dosimetrists manually selected the beam configuration and fine tuned the constraints and objectives for each IMRT plan.

View Article and Find Full Text PDF

Purpose: To investigate the relationship between plan quality and the extent of the beam direction search space in computerized beam angle selection for generating optimal (non-coplanar) IMRT plans for prostate SBRT with dose distributions simulating HDR brachytherapy.

Methods: iCycle (1) was used to investigate the relationship between plan quality and the extent of the set of beam directions available for plan generation. For a group of 10 prostate patients, optimal plans were generated for 5 direction search spaces.

View Article and Find Full Text PDF

Purpose: To prospectively compare plans generated with iCycle, an in-house developed algorithm for fully automated multi-criterial IMRT beam profile and beam orientation optimization (Breedveld, Med. Phys. 2012), and plans manually generated by dosimetrists with the clinical treatment planning system.

View Article and Find Full Text PDF

Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles.

Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives.

View Article and Find Full Text PDF

Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques.

Methods And Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system).

View Article and Find Full Text PDF

Background And Purpose: To investigate the dosimetric impact of not editing auto-contours of the elective neck and organs at risk (OAR), generated with atlas-based autosegmentation (ABAS) (Elekta software) for head and neck cancer patients.

Materials And Methods: For nine patients ABAS auto-contours and auto-contours edited by two observers were available. Based on the non-edited auto-contours clinically acceptable IMRT plans were constructed (designated 'ABAS plans').

View Article and Find Full Text PDF

Purpose: To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images.

Methods And Materials: The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded.

View Article and Find Full Text PDF

Purpose: Comparison of quality of life (QoL) and side effects in a randomized trial for early hyperbaric oxygen therapy (HBOT) after radiotherapy (RT).

Methods And Materials: From 2006, 19 patients with tumor originating from the tonsillar fossa and/or soft palate (15), base of tongue (1), and nasopharynx (3) were randomized to receive HBOT or not. HBOT consisted of 30 sessions at 2.

View Article and Find Full Text PDF

Treatment planning for high precision radiotherapy of head and neck (H&N) cancer patients requires accurate delineation of many structures and lymph node regions. Manual contouring is tedious and suffers from large inter- and intra-rater variability. To reduce manual labor, we have developed a fully automated, atlas-based method for H&N CT image segmentation that employs a novel hierarchical atlas registration approach.

View Article and Find Full Text PDF