Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment.
View Article and Find Full Text PDFSelection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity.
View Article and Find Full Text PDFMantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8 T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain.
View Article and Find Full Text PDFInsertions and deletions (indels) are low-frequency deleterious genomic DNA alterations. Despite their rarity, indels are common, and insertions leading to long complementarity-determining region 3 (CDR3) are vital for antigen-binding functions in broadly neutralizing and polyreactive antibodies targeting viruses. Because of challenges in detecting indels, the mechanism that generates indels during immunoglobulin diversification processes remains poorly understood.
View Article and Find Full Text PDFThe COVID-19 disease causes pneumonia in many patients that in the most serious cases evolves into the Acute Distress Respiratory Syndrome (ARDS), requiring assisted ventilation and intensive care. In this context, identification of patients at high risk of developing ARDS is a key point for early clinical management, better clinical outcome and optimization in using the limited resources available in the intensive care units. We propose an AI-based prognostic system that makes predictions of oxygen exchange with arterial blood by using as input lung Computed Tomography (CT), the air flux in lungs obtained from biomechanical simulations and Arterial Blood Gas (ABG) analysis.
View Article and Find Full Text PDFBackground: Spread through air spaces (STAS) has been reported as a negative prognostic factor in patients with lung cancer undergoing sublobar resection. Radiomics has been recently proposed to predict STAS using preoperative computed tomography (CT). However, limitations of previous studies included the strict selection of imaging acquisition protocols, leading to results hardly applicable to daily clinical practice.
View Article and Find Full Text PDFPurpose: One of the obstacles to the application of Boron Neutron Capture Therapy (BNCT) and Proton Boron Fusion Therapy (PBFT) concerns the measurement of borated carriers' biodistribution. The objective of the present study was to evaluate the in vitro internalization of the F-labelled p-boronophenylalanine (F-BPA) in the human cancer pancreatic cell line (PANC-1) for the potential application of BNCT and PBFT in pancreatic cancer. The F-BPA carrier has the advantage that its bio-distribution may be monitored in vivo using F-Nuclear Magnetic Resonance (F NMR).
View Article and Find Full Text PDFAnaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL.
View Article and Find Full Text PDFThe expression of BCL6 in B-cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions, or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase that is involved in the degradation of BCL6, and it is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of patients with Burkitt lymphoma (BL).
View Article and Find Full Text PDFRev Sci Instrum
April 2021
An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant, and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland).
View Article and Find Full Text PDFThe hypoxia-inducible factor 1 (HIF-1) and the CXCL12/CXCR4 axis regulate the interaction of chronic lymphocytic leukemia cells and the tumor microenvironment. However, the interconnections occurring between HIF-1 and the CXCL12/CXCR4 axis are not fully elucidated. Here, we demonstrate that the CXCL12/CXCR4 axis plays a pivotal role in the positive regulation of the α subunit of HIF-1 (HIF-1α) that occurs in CLL cells co-cultured with stromal cells (SC).
View Article and Find Full Text PDFTumor necrosis factor superfamily member 14 (TNFSF14), LIGHT, is a component of the cytokine network that regulates innate and adaptive immune responses, which promote homeostasis of lymphoid organs, liver, and bone. Metastatic tumors often disrupt the tissue microenvironment, thus altering the homeostasis of the invaded organ; however, the underlying mechanisms required further studies. We investigated the role of LIGHT in osteolytic bone disease induced by metastatic non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFPurpose: To develop and validate an Artificial Intelligence (AI) model based on texture analysis of high-resolution T2 weighted MR images able 1) to predict pathologic Complete Response (CR) and 2) to identify non-responders (NR) among patients with locally-advanced rectal cancer (LARC) after receiving neoadjuvant chemoradiotherapy (CRT).
Method: Fifty-five consecutive patients with LARC were retrospectively enrolled in this study. Patients underwent 3 T Magnetic Resonance Imaging (MRI) acquiring T2-weighted images before, during and after CRT.
RHO GTPases are a class of small molecules involved in the regulation of several cellular processes that belong to the RAS GTPase superfamily. The RHO family of GTPases includes several members that are further divided into two different groups: typical and atypical. Both typical and atypical RHO GTPases are critical transducers of intracellular signaling and have been linked to human cancer.
View Article and Find Full Text PDFIn T lymphocytes, the Wiskott-Aldrich Syndrome protein (WASP) and WASP-interacting-protein (WIP) regulate T cell antigen receptor (TCR) signaling, but their role in lymphoma is largely unknown. Here we show that the expression of WASP and WIP is frequently low or absent in anaplastic large cell lymphoma (ALCL) compared to other T cell lymphomas. In anaplastic lymphoma kinase-positive (ALK+) ALCL, WASP and WIP expression is regulated by ALK oncogenic activity via its downstream mediators STAT3 and C/EBP-β.
View Article and Find Full Text PDFProton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like [Formula: see text] have recently been considered as projectiles in particle therapy centres and might represent a good compromise between the linear energy transfer and the radiobiological effectiveness of [Formula: see text] ion and proton beams, allowing improved tumour control probability and minimising normal tissue complication probability. All the currently used p, [Formula: see text] and [Formula: see text] ion beams allow achieving sharp dose gradients on the boundary of the target volume, however the accurate dose delivery is sensitive to the patient positioning and to anatomical variations with respect to photon therapy.
View Article and Find Full Text PDFThe anaplastic lymphoma kinase (ALK) is recognized by the immune system as a tumor antigen, and preclinical evidence suggests that ALK-rearranged NSCLCs can also be successfully targeted immunologically using vaccine-based approaches. In contrast to ALK-rearranged lymphomas, the frequency and clinical significance of spontaneous ALK immune responses in patients with ALK-rearranged NSCLCs are largely unknown. We developed an enzyme-linked immunosorbent assay (ELISA) to measure anti-ALK antibody levels and mapped specific peptide epitope sequences within the ALK cytoplasmic domain in patients with non-small cell lung cancer.
View Article and Find Full Text PDFThe continuous evolution in preventive medicine has anointed vaccination a versatile, human-health improving tool, which has led to a steady decline in deaths in the developing world. Maternal immunization represents an incisive step forward for the field of vaccination as it provides protection against various life-threatening diseases in pregnant women and their children. A number of studies to improve prevention rates and expand protection against the largest possible number of infections are still in progress.
View Article and Find Full Text PDFPurpose: The real-time monitoring of the spread-out Bragg peak would allow the planned dose delivered during treatment to be directly verified, but this poses a major challenge in modern ion beam therapy. A possible method to achieve this goal is to exploit the production of secondary particles by the nuclear reactions of the beam with the patient and correlate their emission profile to the planned target volume position. In this study, we present both the production rate and energy spectra of the prompt-γ produced by the interactions of the C ion beam with a polymethyl methacrylate (PMMA) target.
View Article and Find Full Text PDFActivation-induced cytidine deaminase (AID) is a B-cell-specific enzyme that targets immunoglobulin genes to initiate class switch recombination and somatic hypermutation. In addition, through off-target activity, AID has a much broader effect on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in the development and progression of lymphoma. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation.
View Article and Find Full Text PDF