Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu.
View Article and Find Full Text PDFBreast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria.
View Article and Find Full Text PDFA new dimeric alkaloid plakoramine A [(±)-] was identified from a marine sponge sp. Chiral-phase HPLC separation of (±)- led to the purified enantiomers (+)- and (-)- which both potently inhibited CBL-B E3 ubiquitin ligase activities. The absolute configurations of the enantiomers were determined by quantum chemical calculations.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) signaling is frequently dysregulated in various cancers. The ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene (Cbl) regulates degradation of activated EGFR through ubiquitination and acts as an adaptor to recruit proteins required for trafficking. Here, we used stable isotope labeling with amino acids in cell culture mass spectrometry to compare Cbl complexes with or without epidermal growth factor (EGF) stimulation.
View Article and Find Full Text PDFAn extract of the coralline demosponge inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new -methyladenine-containing diterpenoids, agelasines W-Y (-), a new bromopyrrole alkaloid, (1)-methylisoageliferin (), and six known ageliferin derivatives (-). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature.
View Article and Find Full Text PDFAn extract of a sp. soft coral showed inhibitory activity against the E3-ubiquitin ligase casitas B-lineage lymphoma proto-oncogene B (Cbl-b). Subsequent bioassay-guided separation of the extract provided a series of terpenoid-derived spermidine and spermine amides that were named sinularamides A-G (-).
View Article and Find Full Text PDFThe transfer of the small protein ubiquitin to a target protein is an intricately orchestrated process called ubiquitination that results in modulation of protein function or stability. Proper regulation of ubiquitination is essential, and dysregulation of this process is implicated in several human diseases. An example of a ubiquitination cascade that is a central signaling node in important disease-associated pathways is that of CBLB [a human homolog of a viral oncogene asitas -lineage ymphoma (CBL) from the Cas NS-1 murine retrovirus], a RING finger ubiquitin ligase (E3) whose substrates include a number of important cell-signaling kinases.
View Article and Find Full Text PDFThree new aryl alkaloids named suberitamides A-C (-), were isolated from an extract of the marine sponge sp. collected along the coast of North Carolina. Their planar structures were established by extensive nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis.
View Article and Find Full Text PDFMany receptor tyrosine kinases (RTKs, such as EGFR, MET) are negatively regulated by ubiquitination and degradation mediated by Cbl proteins, a family of RING finger (RF) ubiquitin ligases (E3s). Loss of Cbl protein function is associated with malignant transformation driven by increased RTK activity. RF E3s, such as the Cbl proteins, interact with a ubiquitin-conjugating enzyme (E2) to confer specificity to the ubiquitination process and direct the transfer of ubiquitin from the E2 to one or more lysines on the target proteins.
View Article and Find Full Text PDFWe report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex.
View Article and Find Full Text PDFPreviously, we found that GST-tagged tumor necrosis factor-related apoptosis inducing ligand preferentially killed triple-negative breast cancer (TNBC) cells with a mesenchymal phenotype by activating death receptor 5 (DR5). The purpose of this study was to explore the sensitivity of breast cancer cell lines to drozitumab, a clinically tested DR5-specific agonist; identify potential biomarkers of drozitumab-sensitive breast cancer cells; and determine if those biomarkers were present in tumors from patients with TNBC. We evaluated viability, caspase activity, and sub-G1 DNA content in drozitumab-treated breast cancer cell lines and we characterized expression of potential biomarkers by immunoblot.
View Article and Find Full Text PDFLung cancer is the number one cancer killer, and metastasis is the main cause of high mortality in lung cancer patients. However, mechanisms underlying the development of lung cancer metastasis remain unknown. Using genome-wide transcriptional analysis in an experimental metastasis model, we identified laminin γ2 (LAMC2), an epithelial basement membrane protein, to be significantly upregulated in lung adenocarcinoma metastatic cells.
View Article and Find Full Text PDFWe analyzed 28 thymic epithelial tumors (TETs) using next-generation sequencing and identified a missense mutation (chromosome 7 c.74146970T>A) in GTF2I at high frequency in type A thymomas, a relatively indolent subtype. In a series of 274 TETs, we detected the GTF2I mutation in 82% of type A and 74% of type AB thymomas but rarely in the aggressive subtypes, where recurrent mutations of known cancer genes have been identified.
View Article and Find Full Text PDFMolecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels.
View Article and Find Full Text PDFPurposes: To determine whether the deregulation of genes relevant for normal thymus development can contribute to the biology of thymic epithelial tumors (TET).
Experimental Design: Using array comparative genomic hybridization, we evaluated the copy number aberrations of genes regulating thymus development. The expression of genes most commonly involved in copy number aberrations was evaluated by immunohistochemistry and correlated with patients' outcome.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines.
View Article and Find Full Text PDFThe role of microRNAs in small-cell lung carcinoma (SCLC) is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53.
View Article and Find Full Text PDFAberrant hypermethylation at CpG sites within the CDKN2A gene is associated with silencing and has been proposed as a target for reactivation using both DNA methylation and histone deacetylation inhibitors. This study investigates the role of selecting tumor samples with a silenced as compared to deleted CDKN2A locus when assessing the efficacy of DNA methyltransferase inhibitor, zebularine, combined with the HDAC inhibitor, depsipeptide. Non-small cell lung cancer cell lines with defined CDKN2A status were analyzed by MTS assay to determine the effect of zebularine or zebularine combined with depsipeptide on tumor cell growth.
View Article and Find Full Text PDFThymidylate synthase (TS) is an essential enzyme for DNA synthesis and repair and elevated levels of TS have been identified as an important prognostic biomarker for colorectal cancer and several other common human malignancies. In addition, TS gene expression has been linked with cell-cycle regulation and cell proliferation through the ability of retinoblastoma protein to repress the transcriptional activation of E2F target genes such as TS. Therefore, overproduction of TS could participate in the progression to a neoplastic phenotype.
View Article and Find Full Text PDFThymidylate synthase (TS), an enzyme that is essential for DNA synthesis and repair has been identified as an important biomarker for colorectal and other human cancers. The elevated steady-state levels of TS found in many common human malignancies have been thought to represent a secondary event in tumor formation. However, it has recently been demonstrated that the deregulated levels of ectopic TS may also have a causal effect on tumorgenesis since overexpression of human TS transforms immortalized mammalian cells to a malignant phenotype.
View Article and Find Full Text PDFThymidylate synthase (TS) is an E2F1-regulated enzyme that is essential for DNA synthesis and repair. TS protein and mRNA levels are elevated in many human cancers, and high TS levels have been correlated with poor prognosis in patients with colorectal, breast, cervical, bladder, kidney, and non-small cell lung cancers. In this study, we show that ectopic expression of catalytically active TS is sufficient to induce a transformed phenotype in mammalian cells as manifested by foci formation, anchorage independent growth, and tumor formation in nude mice.
View Article and Find Full Text PDFThymidylate synthase (TS) is a critical chemotherapeutic target and intracellular levels of TS are an important determinant of sensitivity to TS inhibitors. Translational autoregulation represents one cellular mechanism for controlling the level of expression of TS. This mechanism involves the binding of TS protein to its own messenger RNA (mRNA), thus, repressing translational efficiency.
View Article and Find Full Text PDF