Publications by authors named "Vlieg E"

III-V semiconductor light-emitting diodes (LEDs) are a promising candidate for demonstrating electroluminescent cooling. However, exceptionally high internal quantum efficiency designs are paramount to achieving this goal. A significant loss mechanism preventing unity internal quantum efficiency in GaAs-based devices is nonradiative surface recombination at the perimeter sidewall.

View Article and Find Full Text PDF

Pharmaceutical cocrystals are highly interesting due to their effect on physicochemical properties and their role in separation technologies, particularly for chiral molecules. Detection of new cocrystals is a challenge, and robust screening methods are required. As numerous techniques exist that differ in their crystallization mechanisms, their efficiencies depend on the coformers investigated.

View Article and Find Full Text PDF

The adsorption of carboxylic acid molecules at the calcite (104) and the muscovite (001) surface was investigated using surface X-ray diffraction. All four investigated carboxylic acid molecules, hexanoic acid, octanoic acid, lauric acid, and stearic acid, were found to adsorb at the calcite surface. Whereas the shortest two carboxylic acid molecules, hexanoic acid and octanoic acid, showed limited ordering and a flexible, disordered chain, the two longest carboxylic acid molecules form fully ordered monolayers, i.

View Article and Find Full Text PDF

While much data are available for the Viedma ripening and temperature cycling deracemization processes, not much is known about the advantages (or disadvantages) of a combination of the two. We here try to elucidate what happens when Viedma ripening is used in combination with temperature cycling by comparing not only the deracemization times but also the change in the sizes of the crystals. We found that, in the case of NMPA (-(2-methylbenzylidene)-phenylglycine amide) as a model compound, combined experiments significantly increase the deracemization time.

View Article and Find Full Text PDF

The stereoisomeric system of -2-phenylglycinamide (PGA) and --acetyl tryptophan (NAT) is significant in the application of chiral resolution because it has been shown that this system can be used for enantioseparation of PGA and/or NAT using a novel deracemization route of the conglomerate salt formed. However, it was also found that the conglomerate salt eventually converted into different crystal forms that limited the time available for the separation. Herein, we try to understand the phase conversion occurring in this system using DSC, PXRD, and SC-XRD.

View Article and Find Full Text PDF

Cocrystallization has been promoted as an attractive early development tool as it can change the physicochemical properties of a target compound and possibly enable the purification of single enantiomers from racemic compounds. In general, the identification of adequate cocrystallization candidates (or coformers) is troublesome and hampers the exploration of the solid-state landscape. For this reason, several computational tools have been introduced over the last two decades.

View Article and Find Full Text PDF

The flatness of muscovite mica makes it a convenient substrate to study epitaxy. We have analyzed the growth of rhodochrosite (MnCO) crystals in solution and on muscovite mica. Growth at high supersaturations occurs via the formation of amorphous MnCO, which over time transforms into the crystalline form.

View Article and Find Full Text PDF

A significant amount of attention has been given to the design and synthesis of co-crystals by both industry and academia because of its potential to change a molecule's physicochemical properties. Yet, difficulties arise when searching for adequate combinations of molecules (or coformers) to form co-crystals, hampering the efficient exploration of the target's solid-state landscape. This paper reports on the application of a data-driven co-crystal prediction method based on two types of artificial neural network models and co-crystal data present in the Cambridge Structural Database.

View Article and Find Full Text PDF

The equilibrium atomic interface structure between Ga and GaN(0001) is shown to contain substrate surface vacancies followed by substrate-induced layering and preferential lateral ordering in the liquid. The uncovered presence of point defects, in the form of vacancies at both sides of the solid-liquid interface, is an important structural feature which governs the local physical properties. Our x-ray diffraction study reveals that the layering is very stable and persists up to a temperature of 1123 K and a nitrogen pressure of 32 bar.

View Article and Find Full Text PDF

During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries.

View Article and Find Full Text PDF

Organothiol monolayers on metal substrates (Au, Ag, Cu) and their use in a wide variety of applications have been extensively studied. Here, the growth of layers of organothiols directly onto muscovite mica is demonstrated using a simple procedure. Atomic force microscopy, surface X-ray diffraction, and vibrational sum-frequency generation IR spectroscopy studies revealed that organothiols with various functional endgroups could be self-assembled into (water) stable and adaptable ultra-flat organothiol monolayers over homogenous areas as large as 1 cm .

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Gérard Coquerel at Université de Rouen Normandie. The image depicts a pyramid-like tetrahedron of the quaternary phase diagram showing where symmetry breaking can take place. Read the full text of the article at 10.

View Article and Find Full Text PDF

Viedma ripening is a deracemization process that has been used to deracemize a range of chiral molecules. The method has two major requirements: the compound needs to crystallize as a conglomerate and it needs to be racemizable under the crystallization conditions. Although conglomerate formation can be induced in different ways, the number of racemization methods is still rather limited.

View Article and Find Full Text PDF

Hypothesis: Ion adsorption on mineral surfaces depends on several factors, such as the mineral surface structure and the valency, size and hydration of the ion. In order to understand competitive adsorption at mineral surfaces, experimental techniques are required that can probe multiple ionic species at the same time. By comparing adsorption of two different cations, it should be possible to derive the factors governing ion adsorption.

View Article and Find Full Text PDF

The crystalline sponge method entails the elucidation of the (absolute) structure of molecules from a solution phase using single-crystal X-ray diffraction and eliminates the need for crystals of the target compound. An important limitation for the application of the crystalline sponge method is the instability of the available crystalline sponges that can act as host crystals. The host crystal that is most often used decomposes in protic or nucleophilic solvents, or when guest molecules with Lewis basic substituents are introduced.

View Article and Find Full Text PDF

A productive deracemization process based on a quaternary phase diagram study of a naphthamide derivative is reported. New racemic compounds of an atropisomeric naphthamide derivative have been discovered, and a quaternary phase diagram has been constructed that indicated that four solids are stable in a methanol/H O solution. Based on the results of a heterogeneous equilibria study showing the stable domain of the conglomerate, a second-order asymmetric transformation was achieved with up to 97 % ee.

View Article and Find Full Text PDF

Chiral molecules exhibiting a quinone and/or hydroquinone moiety are ubiquitous in natural products and small molecule drugs. Herein, we describe a chiral quinone-hydroquinone molecule that racemizes through a reversible redox reaction. Using a combined computational and experimental approach, we show that this racemization proceeds via an intermolecular reaction mechanism.

View Article and Find Full Text PDF

To obtain a better understanding of which coformers to combine for the successful formation of a cocrystal, techniques from data mining and network science are used to analyze the data contained in the Cambridge Structural Database (CSD). A network of coformers is constructed based on cocrystal entries present in the CSD and its properties are analyzed. From this network, clusters of coformers with a similar tendency to form cocrystals are extracted.

View Article and Find Full Text PDF

The crystal structures of four di-meth-oxy-benzaldehyde (CHO) isomers, namely the 2,3-, 2,4-, 2,5- and 3,5- isomers, are reported and compared to the previously reported crystal structures of 3,4-di-meth-oxy-benzaldehyde and 2,6-di-meth-oxy-benzaldehyde. All di-meth-oxy-benzaldehyde mol-ecules in the crystal structures are nearly planar. The largest deviation (1.

View Article and Find Full Text PDF

Two-dimensional polymers (2DP) are a new class of materials that consist of a monolayer of ordered molecular building blocks, which have been covalently linked. One of these monomers was self-assembled on a flat muscovite mica scaffold and subsequently the organic layer was polymerized. The resulting flat and stable 2DP layer was used as a template for protein crystallization.

View Article and Find Full Text PDF

Mefloquine is an important drug for prevention and treatment of malaria. It is commercially available as a racemic mixture, wherein only one enantiomer is active against malaria, while the other one causes severe psychotropic effects. By converting the drug into a compound that crystallizes as a racemizable racemic conglomerate, the deracemization of mefloquine into the desired enantiomer was achieved.

View Article and Find Full Text PDF

Temperature cycling, alongside Viedma ripening, has been established as a reliable method for deracemizing racemic mixtures of chiral compounds that crystallize as a conglomerate. Here we report that the speed of temperature cycling can be increased by using chiral additives. We also demonstrate that the chirality of the additive determines the final enantiomeric state of the solid phase.

View Article and Find Full Text PDF

Viedma ripening is an emerging method for the solid-phase deracemization of mixtures of enantiomers. Up to now, the scope of the method has remained limited to molecules with a single stereocenter. We show here that this method can be extended to obtain a single enantiomer from a mixture of stereoisomers with two different stereocenters.

View Article and Find Full Text PDF

A growth cell suitable for microscopic in situ observation of well-controlled crystal growth from the vapor phase is used to study the heteroepitaxial growth of anthraquinone crystals on a (100) NaCl substrate. In this, the morphology, orientation, nucleation, and growth rate of the crystals is studied as a function of driving force, Δμ/. At the lowest Δμ/, the crystals are block-shaped and show no preferential orientation with respect to the substrate.

View Article and Find Full Text PDF

The rich landscape of enantiotropically related polymorphic forms and their solid-state phase transitions of dl-2-aminoheptanoic acid (dl-AHE) has been explored using a range of complementary characterization techniques, and is largely exemplary of the polymorphic behavior of linear aliphatic amino acids. As many as five new polymorphic forms were found, connected by four fully reversible solid-state phase transitions. Two low temperature forms were refined in a high ' crystal structure, which is a new phenomenon for linear aliphatic amino acids.

View Article and Find Full Text PDF