PAI-1, the physiological inhibitor of tissue-type and urokinase-type plasminogen activator, is a unique member of the serpins as it exists in three distinct conformations: an active inhibitory conformation, a non-inhibitory substrate conformation, and a non-reactive latent conformation. Proline substitution of single residues in the P16-P20 region (situated at the proximal hinge of the reactive site loop) of wild-type PAI-1 (wtPAI-1) and a stabilized PAI-1-variant (PAI-1-stab; N150H, K154T, Q301P, Q319L, and M354I, t(1/2)=150), respectively, resulted in two series of PAI-1-variants with different properties. In wtPAI-1 only substitution at P18 resulted in a pronounced u-PA specificity and substrate behaviour towards t-PA.
View Article and Find Full Text PDFPlasminogen activator inhibitor-1 (PAI-1) is a unique member of the serpin family, as it spontaneously converts into a latent conformation. However, the exact mechanism of this conversion is not known. Previous studies reported that neutralizing monoclonal antibodies as well as reversal or removal of charges on the s3C-s4C turn results in a destabilization of PAI-1 leading to an accelerated conversion to its latent form.
View Article and Find Full Text PDFPlasminogen activator inhibitor-1 (PAI-1) is a unique member of the serpin family, as it spontaneously converts into a latent conformation. However, the exact mechanism of this conversion is not known. Previous studies reported that neutralizing monoclonal antibodies (MAs) as well as reversal or removal of charges on the s3C-s4C turn ('gate-region') result in a destabilization of PAI-1 leading to an accelerated conversion to its latent form.
View Article and Find Full Text PDFPlasminogen activator inhibitor-1 (PAI-1) is the only functionally labile serpin, as it converts spontaneously into a non-reactive 'latent' conformation. Several studies have suggested an important role for helix F in the functional behavior and stability of the serpins, especially for PAI-1. We constructed a mutant of PAI-1 (PAI-1-delhF) in which residues 127-158 (hF-thFs3A) were deleted.
View Article and Find Full Text PDFThe serpin plasminogen activator inhibitor-1 (PAI-1) slowly converts to an inactive latent form by inserting a major part of its reactive center loop (RCL) into its beta-sheet A. A murine monoclonal antibody (MA-33B8), raised against the human plasminogen activator (tPA).PAI-1 complex, rapidly inactivates PAI-1.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
February 1999
Because of its intrinsic lability, wild-type plasminogen activator inhibitor 1 (PAI-1) cannot be crystallized in its active conformation. Therefore, a stable variant of PAI-1 was used to retain the active conformation during crystallization. Four different crystallization conditions were evaluated in detail and two major types of crystals were detected.
View Article and Find Full Text PDFThe serpin plasminogen activator inhibitor 1 (PAI-1) can occur, in vitro, in both an inhibitory and a non-inhibitory but cleavable substrate form. In the present study, we have evaluated the effect of replacing the P13 to P10 region of PAI-1 (Val-Ala-Ser-Ser), with the P13 to P10 region of either the non-inhibitory serpin ovalbumin (Glu-Val-Val-Gly; PAI-1-ovalbumin) or the inhibitory serpin antithrombin III (Glu-Ala-Ala-Ala; PAI-1-antithrombin III). In addition, we have replaced Val at position P13 with Glu (PAI-1-P13 (Val-->Glu)).
View Article and Find Full Text PDF